Exercise Set 4

Exercise 4.1. For a finite set \(\emptyset \neq T \subseteq \mathbb{R}^2 \) we define

\[
BB(T) := \max_{(x, y) \in T} x - \min_{(x, y) \in T} x + \max_{(x, y) \in T} y - \min_{(x, y) \in T} y.
\]

A Steiner tree for \(T \) is a tree \(Y \) with \(T \subseteq V(Y) \subseteq \mathbb{R}^2 \). We denote by \(\text{Steiner}(T) \) the length of a shortest rectilinear (i.e. edge lengths acc. to \(\ell_1 \)) Steiner tree for \(T \). Moreover let \(\text{MST}(T) \) be the length of a minimum spanning tree in the complete graph on \(T \) with edge costs \(\ell_1 \).

Prove that:

(a) \(BB(T) \leq \text{Steiner}(T) \leq \text{MST}(T) \);

(b) \(\text{Steiner}(T) \leq \frac{3}{2} BB(T) \) for \(|T| \leq 5 \);

(c) There is no \(\alpha \in \mathbb{R} \) s.t. \(\text{Steiner}(T) \leq \alpha BB(T) \) for all finite \(\emptyset \neq T \subset \mathbb{R}^2 \).

(2 + 3 + 2 points)

Exercise 4.2. Let \(T \) be an instance of the Rectilinear Steiner Tree Problem and \(r \in T \). For a rectilinear Steiner tree \(Y \) we denote by \(f(Y) \) the maximum length of a path from \(r \) to any element of \(T \setminus \{r\} \) in \(Y \).

(a) Find an instance where no Steiner tree minimizes both length and \(f \).

(b) Consider the problem of finding a shortest Steiner tree \(Y \) minimizing \(f(Y) \) among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

(1 + 4 points)

Exercise 4.3. Consider the following algorithm to compute a rectilinear Steiner tree \(T \) for a set \(P \) of points in the plane \(\mathbb{R}^2 \).

In this notation \(SP(u, w) \subset \mathbb{R}^2 \) is the area covered by shortest paths between \(u \) and \(w \), and \(\text{dist}(s, T) \) is the minimum distance between \(s \) and the shortest path area \(SP(u, w) \) of an edge \(\{u, w\} \in E(T) \).
1: Choose $p \in P$ arbitrarily;
2: $T := (\{p\}, \emptyset), S := P \setminus \{p\}$
3: while $S \neq \emptyset$ do
4: Choose $s \in S$ with minimum $\text{dist}(s, T)$
5: Let $\{u, w\} \in E(T)$ be an edge which minimizes $\text{dist}(s, SP(u, w))$
6: $v := \arg \min \{\text{dist}(s, v) \mid v \in SP(u, w)\}$
7: $T := (V(T) \cup \{v\} \cup \{s\}, E(T) \setminus \{u, w\} \cup \{u, v\} \cup \{v, w\} \cup \{v, s\})$
8: $S := S \setminus \{s\}$
9: end while

Show that the algorithm is a $\frac{3}{2}$-approximation algorithm for the Minimum Steiner Tree Problem.

Hint: First show that the length of T is at most the length of a minimum spanning tree on P.

(8 points)

Deadline: Tuesday, May 15th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/chipss18.html

In case of any questions feel free to contact me at bihler@or.uni-bonn.de.