Exercise Set 10

Exercise 10.1. For a directed graph (V, E) with non-negative edge weights c that fulfill the triangle inequality, consider the subtour LP for the asymmetric TSP:

$$
\begin{array}{llll}
\min & c(x) & & \\
\text { s.t. } & x\left(\delta^{+}(U)\right) & \geq 1 & \tag{1}\\
& & (\emptyset \neq U \subset V) \\
& x\left(\delta^{+}(v)\right) & =x\left(\delta^{-}(v)\right) & \\
& (v \in V) \\
x_{e} & \geq 0 & & (e \in E) .
\end{array}
$$

Prove that for any $n \geq 3$, the integrality ratio of the subtour LP for the asymmetric TSP (11) is the smallest number ρ such that for every feasible solution x^{*} of (1) the vector ρx^{*} is a convex combination of integral solutions to (1).
(5 points)
Exercise 10.2. Consider the following algorithm for the Asymmetric TSP with triangle inequality: Given a complete graph G on n vertices and $c: E(G) \rightarrow \mathbb{R}_{+}$, find a directed cycle C in G minimizing $\frac{c(E(C))}{|C|}$ and add the edges of C to the solution. Remove all but one of the vertices of C from G and proceed recursively until G is reduced to a single vertex.

Prove that this is a $(2 \ln n)$-approximation algorithm for the ATSP.
(You may use that the cycle C can be found in polynomial time.)
(4 points)
Exercise 10.3. Prove that the integrality gap of the subtour elimination LP for the s - t-path TSP is at most $\frac{5}{3}$.

Exercise 10.4. Let x be a feasible solution to the subtour elimination LP for the s-t-path TSP.
(a) Prove that there exist sets X_{1}, \ldots, X_{m} with

$$
\{s\} \subseteq X_{1} \subset X_{2} \subset \cdots \subset X_{m} \subseteq V \backslash\{t\}
$$

such that

$$
\left\{\delta\left(X_{i}\right): i \in\{1, \ldots, m\}\right\}=\{\delta(U): \emptyset \neq U \subset V, x(\delta(U))<2\} .
$$

(b) Prove that there exists a spanning tree S in ($V,\left\{e \in E: x_{e}>0\right\}$) such that $\left|S \cap \delta\left(X_{i}\right)\right|=1$ for $i=1, \ldots, m$.

$$
\text { (} 2+4 \text { points })
$$

Deadline: Tuesday, July $10^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de

