Exercise Set 8

Exercise 8.1. Show that in a slight variant of Jain's Algorithm the number of iterations in which we have to solve an LP can be bounded by
(a) $2|V(G)|^{2}$
(b) $2|V(G)|$.

Here we set $x_{e}:=x_{e}+\left\lfloor y_{e}\right\rfloor$ for all e if some $y_{e} \geq 1$, otherwise we update x as before.

Hint: Conclude from Lemma 20.38 that in the second case all but $|V(G)|-2$ edges can be deleted. For (b), delete one more edge in each iteration.

Exercise 8.2. An instance of the Minimum Bounded Degree Spanning Tree Problem (MDBSTP) is an undirected graph G with non-negative edge weights c and degree constraints $B_{v} \geq 1$ for every vertex v. The task is to find a spanning tree T fulfilling all degree constraints, i.e. with $\left|\delta_{T}(v)\right| \leq B_{v}$ for every vertex $v \in V(G)$, that is cheapest possible. The goal of this exercise is to develop an algorithm that computes a spanning tree T of cost at most OPT that violates every degree costraint by at most one.

We consider the following LP relaxation for the MDBSTP (where $W=V(G)$)

$$
\begin{array}{lrl}
\min & \sum_{e \in E(G)} c(e) x_{e} & \\
\text { s.t. } & \sum_{e \in E(G)} x_{e} & =|V|-1 \\
& \sum_{e \in E(G[S])} x_{e} \leq|S|-1 \quad(\emptyset \neq S \subseteq V(G)) \tag{1}\\
\sum_{e \in \delta(v)} x_{e} & \leq B_{v} \\
x_{e} & \geq 0 & (v \in W) \\
& (e \in E(G)) .
\end{array}
$$

(a) Let x^{*} be an extreme point solution of (1) for some set $W \subseteq V(G)$. Call a nonempty vertex set S tight if $x^{*}(E(G[S]))=|S|-1$. Prove that there exists a laminar family \mathcal{L} of tight sets such that $\left\{\chi^{E(G[S])}: S \in \mathcal{L}\right\}$ is a basis of the span of $\left\{\chi^{E(G[S])}: S\right.$ tight $\}$.

We will assume in the following that the above LP relaxation has a feasible solution. (Otherwise, no feasible solution exists.) Now consider the following algorithm:

1. $W \leftarrow V(G)$
2. While $W \neq \emptyset$:

- Find an optimal extreme point solution x^{*} to (1) and remove every edge e with $x_{e}^{*}=0$ from G. Let E^{*} be the support of x^{*}.
- If there exists a vertex $v \in W$ such that $\left|\delta_{E^{*}}(v)\right| \leq B_{v}+1$ then remove v from W.

3. Find an optimal extreme point solution x^{*} and return the support of x^{*}.
(b) Suppose the above algorithm terminates. Show that then it returns the edge set of a a spanning tree of cost at most OPT that violates every degree costraint by at most one.

We now prove that the above algorithm terminates. Suppose $W \neq \emptyset$ and we do not remove any vertex from W because $\left|\delta_{E^{*}}(v)\right| \geq B_{v}+2$ for every $v \in W$.
Let $X \subseteq W$ be the vertices with tight degree constraints (i.e. with $x^{*}(\delta(v))=B_{v}$) and \mathcal{L} as in (a). Note that $\left|E^{*}\right| \leq|X|+|\mathcal{L}|$. To derive a contradiction we use a counting argument. We give one token to each edge $e \in E^{*}$ and redistribute these tokens (fractionally) to the vertices of G and the sets in \mathcal{L}. The redistribution works as follows. Every edge $e \in E^{*}$ gives an x_{e}^{*} fraction of its token to the minimal set $S \in \mathcal{L}$ such that both endpoints of e are contained in S. Moreover, it gives a $\frac{1}{2}\left(1-x_{e}^{*}\right)$ fraction of its token to each of its endpoints.
(c) Prove that every set $S \in \mathcal{L}$ and every vertex $v \in X$ receives at least one token.
(d) Prove:

- $V(G) \in \mathcal{L}$
- For every vertex $v \in V(G) \backslash X$ and every edge $e \in \delta(v)$ we have $x_{e}^{*}=1$.
- For every edge e with $x_{e}^{*}=1$, the incidence vector χ^{e} is contained in the span of $\left\{\chi^{S}: S \in \mathcal{L}\right\}$.
- The vectors $\left\{\chi^{\delta(v)}: v \in X\right\} \cup\left\{\chi^{E(G[S])}: S \in \mathcal{L}\right\}$ are linearly independent.
(e) Use (d) to derive a contradiction.

Announcement by the student council: The student council of mathematics will organize the math party on $21 / 06$ in N8schicht. The presale will be held on Mon 18/06, Tue 19/06 and Wed 20/06 in the mensa Poppelsdorf. Further information can be found at fsmath.uni-bonn.de

Deadline: Thursday, June $21^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de

