Exercise Set 6

Exercise 6.1. Prove that for any fixed $k \in \mathbb{N}$ the directed component LP for the problem of finding a k-restricted Steiner tree can be solved in polynomial time.
(5 points)
Exercise 6.2. Let T denote the terminal set in the Steiner Tree Problem and let $r \in T$ be an arbitrarily chosen root. Let

$$
\mathrm{LP}=\min \left\{c(x): \sum_{e \in \delta(U)} x_{e} \geq 1 \text { for } U \subseteq V \backslash\{r\} \text { with } U \cap T \neq \emptyset, x \geq 0\right\}
$$

Now we replace every edge $\{v, w\}$ by two directed edges (v, w) and (w, v) (with $\operatorname{cost} c(\{v, w\})$. Consider the following LP:

$$
\mathrm{BCR}=\min \left\{c(x): \sum_{e \in \delta^{-}(U)} x_{e} \geq 1 \text { for } U \subseteq V \backslash\{r\} \text { with } U \cap T \neq \emptyset, x \geq 0\right\} .
$$

(a) Prove that the value BCR is independent of the choice of the root $r \in T$.
(b) What is the supremum of $\frac{\mathrm{BCR}}{\mathrm{LP}}$ over all instances (with $\mathrm{LP} \neq 0$)?

Exercise 6.3. Let $G=(V, E)$ be an undirected graph. For a partition \mathcal{P} of the vertex set V let

$$
\delta(\mathcal{P}):=\{e: e \in \delta(U) \text { for some } U \in \mathcal{P}\} .
$$

Prove

$$
\begin{aligned}
& \left\{x \in[0,1]^{E}: \sum_{e \in E} x_{e}=|V(G)|-1, \sum_{e \in E(G[X])} x_{e} \leq|X|-1 \text { for } \emptyset \neq X \subsetneq V(G)\right\} \\
= & \left\{x \in[0,1]^{E}: \sum_{e \in E} x_{e}=|V(G)|-1, \sum_{e \in \delta(\mathcal{P})} x_{e} \geq|\mathcal{P}|-1 \text { for every partition } \mathcal{P} \text { of } V\right\} .
\end{aligned}
$$

Exercise 6.4. Consider the following LP relaxation for the minimum spanning tree problem:

$$
\min \left\{c(x): x \in[0,1]^{E}, \sum_{e \in \delta(X)} x_{e} \geq 1 \text { for } \emptyset \neq X \subsetneq V(G)\right\} .
$$

Show that the integrality gap of this LP relaxation is 2 .
(Do not use Jain's algorithm for the Survivable Network Design Problem.)
(5 points)

Deadline: Thursday, June $7^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de

