Exercise Set 3

Exercise 3.1. Consider the following local search algorithm for the MAXIMUM CUT problem: Start with an arbitrary vertex set $S \subseteq V$. Iterate the following: If a single vertex can be added to S or can be removed from S such that $|\delta(S)|$ increases, do so. If no such vertex exists, terminate and return $\delta(S)$.

- (a) Prove that this algorithm is a 2-approximation algorithm. (In particular, show that it runs in polynomial time.)
- (b) Does the algorithm always find an optimum solution for planar graphs or bipartite graphs?
- (c) Give a linear time 2-approximation algorithm for the MAXIMUM CUT problem in graphs with nonnegative edge weights.

(6 points)

Exercise 3.2. Describe exact algorithms with running times of $O(2^{\frac{n}{2}})$ for the following problems:

- (a) SUBSET SUM: Given $K, n, x_1, \ldots, x_n \in \mathbb{N}$, find $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} x_i = K$ (or decide that no such set exists).
- (b) KNAPSACK (where n denotes the number of items).

(5 points)

Exercise 3.3. The KNAPSACK PROBLEM can be formulated as integer program:

$$\max\left\{\sum_{i=1}^{n} c_{i} x_{i} : \sum_{i=1}^{n} w_{i} x_{i} \le W, \, x_{i} \in \{0,1\} \,\forall \, 1 \le i \le n\right\}$$
(1)

For an instance \mathcal{I} , denote the optimum of (1) by $OPT(\mathcal{I})$ and let $LP(\mathcal{I})$ be the optimum of the linear relaxation, where $x_i \in \{0, 1\}$ is replaced by $0 \le x_i \le 1$.

Show that the *integrality gap*

$$\sup_{\mathcal{I}} \left\{ \frac{\mathrm{LP}(\mathcal{I})}{\mathrm{OPT}(\mathcal{I})} : \mathrm{OPT}(\mathcal{I}) \neq 0 \right\}$$

of the KNAPSACK PROBLEM is unbounded. What is the integrality gap of the KNAPSACK PROBLEM restricted to instances with $w_i \leq W$ for all i = 1, ..., n? (3 points)

- **Exercise 3.4.** (a) Consider the FRACTIONAL MULTI KNAPSACK PROBLEM: Given natural numbers $n, m \in \mathbb{N}$ and $w_i, c_{ij} \in \mathbb{N}$ as well as $W_j \in \mathbb{N}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$, find x_{ij} satisfying $\sum_{j=1}^{m} x_{ij} = 1$ for all $1 \leq i \leq n$ and $\sum_{i=1}^{n} x_{ij}w_i \leq W_j$ for all $1 \leq j \leq m$ such that $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}c_{ij}$ is minimum. State a polynomial-time combinatorial algorithm for this problem. (Do not use that a linear program can be solved in polynomial time.)
 - (b) Can we solve the integral MULTI KNAPSACK PROBLEM in pseudopolynomial time if m is fixed?

(6 points)

Deadline: Thursday, May 3rd, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de.