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Exercise Set 3

Exercise 3.1. Consider the following local search algorithm for the Maximum
Cut problem: Start with an arbitrary vertex set S ⊆ V . Iterate the following:
If a single vertex can be added to S or can be removed from S such that |δ(S)|
increases, do so. If no such vertex exists, terminate and return δ(S).

(a) Prove that this algorithm is a 2-approximation algorithm. (In particular,
show that it runs in polynomial time.)

(b) Does the algorithm always find an optimum solution for planar graphs or
bipartite graphs?

(c) Give a linear time 2-approximation algorithm for the Maximum Cut prob-
lem in graphs with nonnegative edge weights.

(6 points)

Exercise 3.2. Describe exact algorithms with running times of O(2n
2 ) for the

following problems:

(a) Subset Sum:
Given K,n, x1, . . . , xn ∈ N, find S ⊆ {1, . . . , n} with ∑

i∈S xi = K (or decide
that no such set exists).

(b) Knapsack (where n denotes the number of items).

(5 points)

Exercise 3.3. The Knapsack Problem can be formulated as integer program:

max
{

n∑
i=1

cixi :
n∑

i=1
wixi ≤ W, xi ∈ {0, 1} ∀ 1 ≤ i ≤ n

}
(1)

For an instance I, denote the optimum of (1) by OPT(I) and let LP(I) be the
optimum of the linear relaxation, where xi ∈ {0, 1} is replaced by 0 ≤ xi ≤ 1.

Show that the integrality gap

sup
I

{
LP(I)

OPT(I) : OPT(I) 6= 0
}
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of the Knapsack Problem is unbounded. What is the integrality gap of the
Knapsack Problem restricted to instances with wi ≤ W for all i = 1, . . . , n?

(3 points)

Exercise 3.4. (a) Consider the Fractional Multi Knapsack Problem:
Given natural numbers n,m ∈ N and wi, cij ∈ N as well as Wj ∈ N for 1 ≤
i ≤ n and 1 ≤ j ≤ m, find xij satisfying ∑m

j=1 xij = 1 for all 1 ≤ i ≤ n and∑n
i=1 xijwi ≤ Wj for all 1 ≤ j ≤ m such that ∑n

i=1
∑m

j=1 xijcij is minimum.
State a polynomial-time combinatorial algorithm for this problem.
(Do not use that a linear program can be solved in polynomial time.)

(b) Can we solve the integral Multi Knapsack Problem in pseudopolynomial
time if m is fixed?

(6 points)

Deadline: Thursday, May 3rd, before the lecture. The websites for lecture and
exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de.
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