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Exercise Set 2

Exercise 2.1. The k-Center Problem is defined as follows: given an undirected
graph G, weights c : E(G) → R+, and a number k ∈ N with k ≤ |V (G)|, find a
set X ⊆ V (G) of cardinality k such that

max
v∈V (G)

min
x∈X

dist(v, x)

is minimum. As usual we denote the optimum value by OPT(G, c, k).

(a) Let S be a maximal stable set in (V (G), {{v, w} : dist(v, w) ≤ 2R}). Show
that then OPT(G, c, |S| − 1) > R.

(b) Use (a) to describe a 2-factor approximation algorithm for the k-Center
Problem.

(c) Prove that it is NP-hard to obtain an r-approximation for the k-Center
Problem for any r < 2.
Hint: Use a reduction from the Vertex Cover Problem.

(7 points)

Exercise 2.2. Consider the standard IP formulation of the Minimim Weight
Set Cover Problem, and its LP-relaxation

min
{

cx :
∑

S∈S:e∈S

xS ≥ 1 for all e ∈ U, xS ≥ 0 for all S ∈ S
}

.

Consider the algorithm that picks all sets associated with non-zero values in an
optimum solution to the LP-relaxation. Show that this algorithm achieves an
approximation guarantee of p if each element e ∈ U is contained in at most p sets.

(3 points)

Exercise 2.3. Maximum Coverage is the following problem. Given a set U of
n elements, a collection S of subsets of U and an integer k, pick sets S1, . . . , Sk ∈ S
maximizing

∣∣∣⋃k
i=1 Si

∣∣∣. Consider the greedy algorithm, of iteratively picking the set
that contains the maximum number of elements that were not already covered
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before. (Iterate until k sets are picked.) Show that this algorithm achieves an
approximation ratio of(

1−
(

1− 1
k

)k
)−1

<
(

1− 1
e

)−1
= 1 + 1

e− 1 .

(5 points)

Exercise 2.4. An instance of Max-Sat is called k-satisfiable if any k of its clauses
can be satisfied simultaneously. Give a polynomial-time algorithm that computes
for every 2-satisfiable instance a truth assignment which satisfies at least a

√
5−1
2 -

fraction of the clauses.

Hint: Some variables occur in one-element clauses (w.l.o.g. all one-element clauses
are positive), set them true with probability a (for some constant a ∈ [0, 1]),
and set the other variables true with probability 1

2 . Choose a appropriately and
derandomize this algorithm.

(5 points)

Deadline: Tuesday, April 24th, before the lecture. The websites for lecture and
exercises can be found at:

http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html

In case of any questions feel free to contact me at traub@or.uni-bonn.de.
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