Exercise Set 2

Exercise 2.1. The k-Center Problem is defined as follows: given an undirected graph G, weights $c: E(G) \rightarrow \mathbb{R}_{+}$, and a number $k \in \mathbb{N}$ with $k \leq|V(G)|$, find a set $X \subseteq V(G)$ of cardinality k such that

$$
\max _{v \in V(G)} \min _{x \in X} \operatorname{dist}(v, x)
$$

is minimum. As usual we denote the optimum value by $\operatorname{OPT}(G, c, k)$.
(a) Let S be a maximal stable set in $(V(G),\{\{v, w\}$: $\operatorname{dist}(v, w) \leq 2 R\})$. Show that then $\operatorname{OPT}(G, c,|S|-1)>R$.
(b) Use (a) to describe a 2-factor approximation algorithm for the k-Center Problem.
(c) Prove that it is NP-hard to obtain an r-approximation for the k-CENTER Problem for any $r<2$.
Hint: Use a reduction from the Vertex Cover Problem.

Exercise 2.2. Consider the standard IP formulation of the Minimim Weight Set Cover Problem, and its LP-relaxation

$$
\min \left\{c x: \sum_{S \in \mathcal{S}: e \in S} x_{S} \geq 1 \text { for all } e \in U, x_{S} \geq 0 \text { for all } S \in \mathcal{S}\right\} .
$$

Consider the algorithm that picks all sets associated with non-zero values in an optimum solution to the LP-relaxation. Show that this algorithm achieves an approximation guarantee of p if each element $e \in U$ is contained in at most p sets. (3 points)

Exercise 2.3. Maximum Coverage is the following problem. Given a set U of n elements, a collection \mathcal{S} of subsets of U and an integer k, pick sets $S_{1}, \ldots, S_{k} \in \mathcal{S}$ maximizing $\left|\cup_{i=1}^{k} S_{i}\right|$. Consider the greedy algorithm, of iteratively picking the set that contains the maximum number of elements that were not already covered
before. (Iterate until k sets are picked.) Show that this algorithm achieves an approximation ratio of

$$
\left(1-\left(1-\frac{1}{k}\right)^{k}\right)^{-1}<\left(1-\frac{1}{e}\right)^{-1}=1+\frac{1}{e-1}
$$

Exercise 2.4. An instance of Max-Sat is called k-satisfiable if any k of its clauses can be satisfied simultaneously. Give a polynomial-time algorithm that computes for every 2-satisfiable instance a truth assignment which satisfies at least a $\frac{\sqrt{5}-1}{2}$. fraction of the clauses.

Hint: Some variables occur in one-element clauses (w.l.o.g. all one-element clauses are positive), set them true with probability a (for some constant $a \in[0,1]$), and set the other variables true with probability $\frac{1}{2}$. Choose a appropriately and derandomize this algorithm.
(5 points)

Deadline: Tuesday, April $24^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:

```
http://www.or.uni-bonn.de/lectures/ss18/appr_ss18_ex.html
```

In case of any questions feel free to contact me at traub@or.uni-bonn.de

