Exercise Set 6

Exercise 6.1. Prove that the Standard Placement Problem can be solved optimally in
\[O \left(\left((n + s)! \right)^2 (m + n^2 + k \log k)(n + k) \log(n + k) \right) \]
time, where \(n := |\mathcal{C}|, \ k := |\mathcal{N}|, \ m := |\mathcal{P}| \) and \(s := |\mathcal{S}|. \) (5 points)

Exercise 6.2. Given a chip area \(A \) and a set \(\mathcal{C} \) of circuits. A movebound for \(C \in \mathcal{C} \) is a subset \(A_C \subseteq A \) in which \(C \) must be placed entirely. Assume that the height and width of every circuit is 1 and that \(A \) and each movebound \(A_C (C \in \mathcal{C}) \) are axis-parallel rectangles with integral coordinates.

Describe an algorithm with running time polynomial in \(|\mathcal{C}|\) that decides whether there is a feasible placement meeting all movebound constraints. (5 points)

Exercise 6.3. Consider the Standard Placement Problem on instances without blockages, where \(h(C) \equiv 1 \equiv w(C) \) (unit size for \(C \in \mathcal{C} \)) as well as \(w(N) \equiv 1 \) (unit net weights for \(N \in \mathcal{N} \)).

Prove or disprove that this problem is NP-hard. (5 points)

Exercise 6.4. Let \(\mathcal{N} \) be a finite set of pins, and let \(S_p \) be a set of axis-parallel rectangles for each \(p \in \mathcal{N} \). We want to compute the bounding box netlength of \(\mathcal{N} \), i.e. an axis-parallel rectangle \(R \) with minimum perimeter s.t. for every \(p \in \mathcal{N} \) there is an \(S \in S_p \) with \(R \cap S \neq \emptyset \).

Show how to compute such a rectangle in \(O(n^3) \) time where \(n := \sum_{p \in \mathcal{N}} |S_p| \). (5 points)

Deadline: June 13th, before the lecture. The websites for lecture and exercises can be found at http://www.or.uni-bonn.de/lectures/ss17/chipss17.html

In case of any questions feel free to contact me at ochsendorf@or.uni-bonn.de.