Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2017

Prof. Dr. S. Hougardy D. Rotter

Repetition Sheet

Exercise 1: \mathcal{O} , Θ , Ω -notation Determine if $f(n) \in \mathcal{O}(g(n)), f(n) \in \Omega(g(n)), f(n) \in \Theta(g(n))$

- 1. $f(n) = n^3$, $g(n) = 3n^3 + n^2 + 7n 100$
- 2. $f(n) = n^{\log(n)}, g(n) = n^2$
- 3. for $\epsilon > 0$: $f(n) = \log(n), g(n) = n^{\epsilon}$
- 4. $f(n) = \log(n!), g(n) = n \log(n)$
- 5. $f(n) = \log(1 + \frac{1}{n}), g(n) = \frac{1}{n}$

Exercise 2: Turing machines - The Halting Problem

Turing machines can be encoded by binary strings. The Halting Problem is defined as follows: Given two binary strings x and y, with x encoding a Turing machine Φ . Question: Does Φ with input y terminate after finite time?

Prove that the Halting Problem is undecidable, i.e. there exists no algorithm which solves this problem.

Exercise 3: NP

Prove: If $\mathcal{P} \in NP$, there exists a polynomial p such that \mathcal{P} can be solved by a deterministic algorithm in time $\mathcal{O}(2^{p(n)})$.

Exercise 4: Graph theory

Prove that HAMILTONIAN PATH and HAMILTONIAN CYCLE are not NP-complete for simple, undirected graphs G with $|\delta(v)| \geq \frac{n}{2}$ for each $v \in V(G)$ (n := |V(G)|).

Exercise 5: NP hardness

Prove that the following problem is NP-complete:

Instance:	An instance of 3SAT.
Question:	Is there a truth assignment in which every clause contains at least
	one true and one false literal?