Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2017

Prof. Dr. S. Hougardy D. Rotter

Exercise Set 7

Exercise 7.1:

In this exercise we will derive a polynomial algorithm for a variant of the BIN PACKING problem where we relax the bin capacities by some $\epsilon > 0$.

(i) Give an algorithm for BIN PACKING restricted to instances with a constant number of different item sizes whose running time is polynomially bounded in the number n of items.

Hint: Use dynamic programming.

(ii) Prove that for any fixed $\varepsilon > 0$ there exists a polynomial-time algorithm which for any instance $I = (a_1, \ldots, a_n)$ of the BIN PACKING problem finds a packing using the optimum number of bins but possibly violating the capacity constraints by ε , i. e. an $f : \{1, \ldots, m\} \to \{1, \ldots, \text{OPT}(I)\}$ with $\sum_{f(i)=j} a_i \leq 1 + \varepsilon$ for all $j \in \{1, \ldots, \text{OPT}(I)\}$.

(4+4 points)

Exercise 7.2:

Consider the following algorithm for the GRAPH STEINER TREE PROBLEM with 3 terminals v_1 , v_2 , and v_3 : Find a shortest path P between v_1 and v_2 and let a be the distance of v_3 to P. Then find a vertex z minimizing $\sum_{i=1}^{3} \text{dist}(v_i, z)$ under the conditions

- (i) $\operatorname{dist}(v_i, z) \leq \operatorname{dist}(v_1, v_2)$ for $i \in \{1, 2\}$ and
- (ii) dist $(v_3, z) \leq a$.

The algorithm returns the union of the shortest paths from z to the terminals. Show that the algorithm needs $\mathcal{O}(|E| + |V| \log |V|)$ time and works correctly.

(4 points)

Deadline: Tuesday, June 20th, before the lecture.