Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2017

Prof. Dr. S. Hougardy D. Rotter

(2 points)

Exercise Set 5

Exercise 5.1:

Consider the linear-time WEIGHTED MEDIAN algorithm. Recall that the list of numbers is partitioned into groups of 5 elements each. Does the algorithm still have linear runtime if the numbers are instead partitioned into

(i) groups of 3 elements each?	(2 points)

(ii) groups of 7 elements each?

Exercise 5.2:

Consider the following generalization of the KNAPSACK problem:

Instance: An instance $w_i, \ldots, w_n, c_1, \ldots, c_n, W$ of the KNAPSACK problem, values $b_1, \ldots, b_n \in \mathbb{Z}_+ \cup \{\infty\}$. **Output:** Integers $0 \le x_i \le b_i$ for $i = 1, \ldots, n$ such that $\sum_{i=1}^n x_i w_i \le W$ and $\sum_{i=1}^n x_i c_i$ is maximum.

- (i) Prove that this problem is NP-hard even if $b_i = \infty$ for i = 1, ..., n. (4 points)
- (ii) Give an FPTAS for this problem. (4 points)

Exercise 5.3:

Describe a polynomial-time combinatorial algorithm for the FRACTIONAL MULTI KNAPSACK PROBLEM:

Instance: Natural numbers $n, m \in \mathbb{N}$ and $w_i \in \mathbb{N}$, $W_j \in \mathbb{N}$, and $c_{ij} \in \mathbb{N}$ for $i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$.

Output: Values $x_{ij} \in \mathbb{R}_{\geq 0}$ for $i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$ such that

$$\sum_{j=1}^{m} x_{ij} = 1 \quad \text{for all } i \in \{1, \dots, n\},$$

$$\sum_{i=1}^{n} x_{ij} w_i \leq W_j \quad \text{for all } j \in \{1, \dots, m\},$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} c_{ij} \quad \text{is minimum.} \quad (4 \text{ points})$$

Deadline: Thursday, May 25th, before the lecture.