Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2017

Prof. Dr. S. Hougardy D. Rotter

Exercise Set 2

Exercise 2.1:

For $k \in \mathbb{N}$ consider the following problem:

Instance:	A set U and a set \mathcal{S} of subsets of U with $ S \leq k$ for all weights $w: U \to \mathbb{R}_{\geq 0}$	$l S \in \mathcal{S},$
Task:	Find $T \subseteq U$ such that $T \cap S \neq \emptyset$ for each $S \in S$ and \sum minimum.	$\sum_{t\in T} w(t)$
(i) Show t	hat this problem is NP-hard for $k \ge 2$.	(2 points)
(ii) Give a	polynomial time k -factor approximation algorithm.	(3 points)

(iii) Give a *linear time* k-factor approximation algorithm for the case that w(t) = 1 for $t \in U$. (3 points)

Exercise 2.2:

Prove that the following problem is NP-complete:

Instance:	An undirected graph $G = (V, E)$ and an integer k.
Question:	Is there $X \subset V$ with $ X \le k$ and $ \delta(X) \ge k$?

(4 points)

Exercise 2.3:

Given a directed cycle C = (V, E) and a set of undirected edges $E_1 \subseteq \{\{v, w\} | v, w \in V, v \neq w\}$. We are looking for an orientation E_1^{\leftrightarrow} of E_1 such that, in the digraph $G' = (V, E \cup E_1^{\leftrightarrow}),$

$$\max_{e \in E} \left| \{ C' \text{ directed cycle } | e \in E(C') \text{ with } |E(C') \cap E_1^{\leftrightarrow}| = 1 \} \right|$$

is minimum. Give a linear time 2-approximation algorithm for that problem.

(4 points)

Deadline: Thursday, May 4th, before the lecture.