Recall \(M \times N \) 0,1 matrix \(\Phi \) has SCC \(f : [N]^2 \rightarrow N \)
if \(\forall \) submatrices \(\Phi^* \) of \(\Phi \) w.r.t. \(n \in N \) columns
there are at most \(f(n, k) \) cells of depth \(\leq k \), \(\forall n \leq n \).

\[
\min \{ c^T x : \Phi x \geq 1, x \geq 0, x \text{ int} \}
\]

Thm 1: If \(\Phi \) has SCC \(f(n, k) = n \phi(n) k^c \)
the \(\exists \) rand.
\(O(\max \{1, \log \phi(n)\}) \sim \Phi \).
\(\leq c(n) \)

\textbf{Last time:} Sufficient to resolve the following Q.

\textbf{Give:} \(M \times N \) 0,1-matrix \(\Phi^* \) w.r.t.
- SCC \(f(n, k) = n \phi(n) k^c \)
- each cell is \(L = M/2 \) deep
 (i.e., \(\geq L \) 1's in each row)

\textbf{Find:} \(\mathcal{C} \subseteq [N] \) feasible cover s.t.
that \(\forall j \in \mathcal{C} \) :
\(Pr[j \in \mathcal{C}] = O\left(\frac{\phi(n)}{L}\right) \)

\textbf{Overview} algorithm works in phases
In a phase we are given a
Overview

Algorithm covers in phase

In a phase we are given a maxn submatrix F of A^* of depth $\geq K$

1. **Terminate if K small**

\[
\left[\max \{\log k, c(n)\} \geq \frac{k}{12(c+3)} \right]
\]

\Rightarrow **force all remaining columns into the cover**

2. **Otherwise**

\[
\text{Comp: pol} \text{-hin } [n] = F \cup RUF <-
\]

\downarrow forced \uparrow rejected

Submatrix B is obtained from F by dropping

- Columns in RUF
- now that there 1 in at least one F col.

Want: B is at least $k/2$-deep

\Rightarrow on to next phase till B and $k/2$

Final Cor: all forced columns over all situations
Phase Details

1. Mark each column \(j \) of \(\Pi \) with prob \(\frac{1}{2} + h(N,K) \) if \(\Pi(j) < \frac{k}{2} \) is in \(T \) columns, force a column \(j \) \& \(T \) that has 1 in row \(i \) (\(j \) covers row \(i \)).

Want to achieve

(i) \(B \) is \(k_2 \)-depr \(\checkmark \)

(ii) Each col \(j \) not in \(T \) will prob \(\leq \frac{1}{2} + h(N,K) \) \(\checkmark \)

(iii) Each column of \(\Pi \) is in \(F \) with prob \(\leq \frac{1}{k^2} \)

Will ensure (iii) by choosing \(h(N,K) \) just right.

Note:

- Increasing \(h(N,K) \) decreases forcing probability in non-terminal phase
- Increasing \(h(N,K) \) increases
• increasing $h(m,k)$ increases prod. that a column is retained

\Rightarrow and hence forcing prod in terminal phase

turns out $h(n,k) = \sqrt{\frac{\log k + \phi(n)}{k}}$ words.

How to ‘force’ the right columns

A $mn \times m$ matrix

Call $R \subseteq [m]$ a k-cluster if $\exists C \subseteq [n], |C| = k$ and submatrix of A induced by R, C is all-1s.

ex:

$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$ * forms a 2-cluster

Key Lemma A $mn \times n$, k-deep matrix,

$SCC \downarrow (m,k) = n \phi(n) k^C$

Thus is an efficiently computable map

$\downarrow : [m] \rightarrow [n]$

s.t.
• Column \(\delta(i) \) covers row \(i \)
 (has a one in row \(i \)) \(\begin{align*}
i : \delta(i) &= 1^3
\end{align*} \)

• The pre-image \(\delta^{-1}(j) \) of column \(j \)
can be partitioned into \(\phi(n) k^{c+1} \) \(k \)-clusters

Proof Sketch
Suppose \(\Phi \) is \(k \)-deep and has SEC \(\gamma(n,k) = n \phi(n) k^c \)

\[\Rightarrow \exists \text{col. } j \text{ that has } 1 \text{ in at most } \phi(n) k^{c+1} \text{ cell of depth exactly } k \]

Why?
removing rows of depth \(> k \) and duplicate row \(\Rightarrow \Phi' \)

\(\Phi' \) has \(\leq n \phi(n) k^c \) rows with \(k \)’s and

\[\Rightarrow n \phi(n) k^{c+1} \text{ } 1’s \text{ in matrix} \]

\[\Rightarrow \exists \text{col. that has } \leq \phi(n) k^{c+1} \text{ is.} \]

Algorithm to construct \(\Phi \)

While \(\Phi \) has rows left

• pick col. \(j \) as above that intersects at most \(\phi(n) k^{c+1} \) cells of depth \(k \)
• assign these cells to \(j \)
• delete from \(\Phi \) the column \(j \) and all rows belonging to cells just assigned.

[End while]
(Note: if \(\theta \) has depth \(> k \), then we may drop an arbitrary column.)

Lemma 1 In a non-terminating phase of algo, a column \(j \) of \(\theta \) is forced if \(\text{pred} \leq \frac{1}{k^2} \).

Proof: Consider \(j \in [n] \). By key lema, can partition \(\mathscr{H}^{-1}(j) \) into \(\phi(n)k^{c+1} \)-clusters \(R_1, \ldots, R_p \).

Now: \(j \) is forced if row in one of the clusters are \(< k^2 \)-deep

Pide R_i: Let \(C \subseteq [n] \) be the \(k \) columns defining cluster \(R_i \).

Define \(\nu = \# \text{col of } C \text{ marked} \)

\[E[\nu] = k \cdot \left(\frac{1}{2} + h(N,k) \right) = \mu \]

\(Z \): sum of indep. ind. dist. 0,1-\(\nu \)

\(\text{Chernoff bound: sd. prd. of deviation of } Z \text{ from } \mu \)
\[\Pr[Z \leq (1-e)\mu] \leq e^{-e^2\mu/3} \quad (e \in (0,1)) \]

\(j \) is forced d/c cluster \(R_i \) if fewer than \(k/2 \) columns in \(C \) are marked:

\[\Pr[Z \leq k/2] = \Pr[Z \leq (1 - \frac{k h(N,k)}{k/2 + k h(N,k)}) \mu] \]

\[\leq e^{-\frac{1}{3} \left(\frac{k h(N,k)}{k/2 + k h(N,k)} \right)^2 \left(\frac{k}{2} + k h(N,k) \right)} \]

\[= e^{-\frac{1}{3} \left(\frac{k h(N,k)}{\frac{k}{2} + h(N,k)} \right)^2} \leq e^{-\frac{2}{3} k h(N,k)^2} \]

Union bound \(\Rightarrow \) \(\Pr \) that \(j \) is forced

\[\leq \phi(n) k^{c+1} \cdot e^{-\frac{2}{3} k h(N,k)^2} \]

new pride: \(h(N,k) = \sqrt{\frac{1}{2} \left(\frac{c+3}{c-1} \log k + \epsilon k \right)} \leq \log \phi(n) \)

\[\leq \frac{1}{k^2} \]

So: marking prod. is large enough to ensure that in each phase, forcing prod is relatively low.
Lemma 2. After \(t \) phases any column \(j \in [N] \) still remains with prob \(\frac{\text{oc}(t)}{2^t} \)

Proof: \(j \) remains if it is marked in each phase. Happens with prob

\[
\Pr_e = \prod_{i=0}^{t-1} \left(\frac{1}{2} + h(N, \frac{L}{2^i}) \right)
\]

\[
h(N, \frac{L}{2^i}) = \sqrt{\frac{N}{2} \frac{(c+1) \log \frac{4L}{i} + \text{oc}(N)}{L/2^i}} = O(1) \sqrt{\frac{\log \left(\frac{L}{i} + \text{oc}(N) \right)}{L}} 2^i
\]

\[
= \prod_{i=0}^{t-1} \left(\frac{1}{2} + o(1) \sqrt{2^i \frac{\log \left(\frac{L}{i} + \text{oc}(N) \right)}{L}} \right)
\]

Suppose termination condition does not hold at any phase \(t \):

\[
\text{oc}(N) < \frac{L/2^t}{12(c+3)} \quad \text{depth 16 in phase } t
\]

\[
\leq \prod_{i=0}^{t-1} \left(\frac{1}{2} + o(1) \sqrt{2^i \frac{\log (L-i)}{L}} + o(1) \right)
\]

\[
= \frac{O(1)}{2^t} \quad \square
\]

missing details in paper [CGKS'12]
Note:

\(\log k \geq \frac{k}{12(c+3)} \) or \(e(n) \geq \frac{k}{12(c+3)} \)

\[\implies \log k + e(n) \geq \frac{k}{12(c+3)} \]

\[\implies k \leq O(1) e(n) \]

\[\implies \text{need at least } O(1) \log \left(\frac{L}{e(n)} \right) \]

phase to read termination

\[\implies \text{Rob that a column } j \text{ is retained through all iterations} \]

\[\leq \frac{O(1)}{2 \log L/e(n)} \]

\[= O\left(\frac{e(n)}{L} \right) \]

Lemma:

A column is forced in any phase with prob \(O\left(\frac{e(n)}{L} \right) \).

\[\implies \text{show this for terminating phase.} \]

Suffices to consider non-terminating phases.

In phase \(i \), depth is \(k = \frac{L}{2^i} \). Forcing prob for col. \(j \) is at most

\[\frac{O(1)}{2^i} \cdot \frac{1}{k^2} = \frac{O(1)}{2^i} \left(\frac{2^i}{L} \right)^2 = O\left(\frac{2^i}{L^2} \right) \]
pr. that jurying
i survives in i
to i

Sum over all non-terminating phases:

\[
\frac{o(1)}{L} \sum_{i=0}^{\log L} \frac{2^i}{L} = \frac{o(1)}{L}
\]

The lemma completes pf. of main theorem.