Exercise Set 9

Exercise 9.1:

Prove Kraft's inequality (Proposition 4.1 in the lecture notes).

Let S be a nonempty finite set, $r \notin S$, and $h_s \in \mathbb{N}$ for $s \in S$. There exists a topology for root r and sinks S with $\left| E\left(A_{[r,s]}\right) \right| - 1 \leq h_s$ for all $s \in S$ if and only if

$$\sum_{s \in S} 2^{-h_s} \le 1.$$

(5 points)

Exercise 9.2:

Consider the Repeater Tree Topology problem. Let $|S| = n \ge 2$, and for each sink s_i define $a'_{s_i} := a_{s_i} - d \| p(r) - p(s_i) \|_1$, i = 1, ..., n.

Algorithm 1: Huffman coding

$$A \leftarrow (\{r\}, \emptyset);$$

for $k = n, n - 1, \dots, 2$ do

Sort $S = \{s_1, ..., s_k\}$ s.t. $a'_{s_1} \le ... \le a'_{s_k}$;

Merge two sinks s_{k-1}, s_k into a new sink s'_{k-1} ;

Choose $p(s'_{k-1})$ as the position that minimizes

$$||p(r) - p(s'_{k-1})||_1 + ||p(s_k) - p(s'_{k-1})||_1 + ||p(s_{k-1}) - p(s'_{k-1})||_1;$$

Set
$$a_{s'_{k-1}} := \min\{a_{s_i} - d \| p(s_i) - p(s'_{k-1}) \|_1 - b \mid i = k, k-1\};$$

 $\slash *$ Update $S\slash *$ add vertices and edges to A*/

$$S \leftarrow (S \setminus \{s_{k-1}, s_k\}) \cup \{s'_{k-1}\};$$

$$V(A) \leftarrow V(A) \cup \{s_{k-1}, s_k, s'_{k-1}\}$$

$$S \leftarrow (S \setminus \{s_{k-1}, s_k\}) \cup \{s'_{k-1}\};$$

$$V(A) \leftarrow V(A) \cup \{s_{k-1}, s_k, s'_{k-1}\};$$

$$E(A) \leftarrow E(A) \cup \{(s'_{k-1}, s_{k-1}), (s'_{k-1}, s_k)\};$$

/* Connect the last vertex to r

$$E(A) \leftarrow E(A) \cup \{(r, s_1')\}.$$

Show that the topology generated by Algorithm 1 maximizes the worst slack. (5 points)

*/

Exercise 9.3:

Show that the approximation algorithm for the Rectilinear Sink Clustering Problem presented in the lecture can be implemented to run in $O(|D|\log|D|)$ time.

Note: you can assume that a shortest rectilinear spanning tree on n terminals can be computed in $O(n \log n)$ time.

(5 points)

Deadline: June $30^{\rm th}$, before the lecture. The websites for lecture and exercises can be found at

http://www.or.uni-bonn.de/lectures/ss16/ss16.html

In case of any questions feel free to contact me at saccardi@or.uni-bonn.de.