Exercise Set 6

Exercise 6.1:

Show that the STANDARD PLACEMENT PROBLEM can be solved optimally in time

$$O\left(\frac{\left((n+s)!\right)^2}{2^s}\cdot(n+k)\cdot(m+n^2+k\log k)\cdot\log(n+k)\right),$$

where $n = |\mathcal{C}|, s = |\mathcal{S}|, k = |\mathcal{N}|, m = |P|$. Here, \mathcal{C} is the set of circuits, \mathcal{N} the netlist, P the set of pins and S a set of disjoint blockages.

(4 points)

Exercise 6.2:

Given rectangles C_1, \ldots, C_n with widths w_1, \ldots, w_n and heights h_1, \ldots, h_n , formulate an integer linear program that checks whether they can be packed (without overlaps) within a rectangle $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$, allowing rotations by multiples of 90° .

(3 points)

Exercise 6.3:

Implement an algorithm which computes a rectangular chip image of minimum area in which a feasible placement exists for a given set of n rectangles (without rotations), by means of sequence pairs. The theoretical running time must be $O((n!)^2 \cdot n \log n)$.

Figure 1

Input: your program will take one argument, the path to a file as in Figure 1a where $n \in \mathbb{N}_{>0}$ is the number of rectangles to be placed, and the remaining n lines define the width $w_i \in \mathbb{N}_{>0}$ and the height $h_i \in \mathbb{N}_{>0}$ of the *i*-th rectangle. The values w_i and h_i fit into a 32-bit unsigned integer.

Programming exercise

Figure 2: An example of an instance with two squares with edge length 1 and 2, and one possible output.

Output: the output consists of 2n + 2 nonnegative integers, which your program will write to the standard output in the form specified by Figure 1b, where W and H are, respectively, the width and the height of the computed chip area $[0, W] \times [0, H]$, and the remaining n lines encode the coordinates $(x_i, y_i) \in [0, W - w_i] \times [0, H - h_i]$ of the lower left corner of the *i*-th rectangle.

The program must be written in C or C++ (you are allowed to use up to C++11) and must compile and run on Linux. To achieve the maximum score, your program must not leak any memory and must be well documented. It must compile with either Clang $\geq 3.4.2$ or Gcc $\geq 4.8.3$, with -Wall -Wpedantic -Werror, and it cannot link to any other library. You can use any tool available in the standard library.

The deadline for the programming exercise is June 19th, 12:00. Deliver your source code by email.

(15 points)

Deadline: June 9th, before the lecture. The websites for lecture and exercises can be found at

In case of any questions feel free to contact me at saccardi@or.uni-bonn.de.