Exercise Set 1

Exercise 1.1:

Let $n \in \mathbb{N}$ such that $\log_2(n) \in \mathbb{N}$ and let $+ : \{0, 1\}^{2n} \to \{0, 1\}^{n+1}$ be the addition function of two binary *n*-bit integers:

Input: $A_i, B_i \in \{0, 1\}, i = 0, 1, ..., n - 1$, representing the numbers $A = \sum_{i=0}^{n-1} 2^i \cdot A_i, \qquad B = \sum_{i=0}^{n-1} 2^i \cdot B_i.$ **Output:** The binary representation of A + B.

Construct two netlists (one for each of the following conditions) realizing the function + using a library containing ANDs, ORs and XORs, each with two inputs, such that:

- (a) the number of used circuits is at most 5n;
- (b) the number of circuits on each path from an input pin to an output pin is at most $n + \log_2(n)$.

For both netlists derive formulas for the number of used circuits and the number of circuits on the longest path from an input pin to an output pin.

(6 points)

Exercise 1.2:

Prove or disprove: for every netlist with technology mapping there is a logically equivalent one that only contains:

- (a) *NORs*;(b) *XORs*;
- (c) NANDs.

(4 points)

Exercise 1.3:

Let $n \in \mathbb{N}$, $n \geq 7$. Prove that there exists a boolean function $f: \{0, 1\}^n \to \{0, 1\}$ such that there exists no netlist realizing f with at most $\frac{2^{n-1}}{n}$ circuits, each with at most two inputs.

(4 points)

Turn page! \rightarrow

Chip Design	Prof.	Dr. Jens	Vygen
Summer Term 2016	Pietro	Saccardi,	M.Sc.

Exercise 1.4:

Show that it is possible to solve ALL-CROSSINGS in time $O((n + k) \log n)$, where k is the number of intersection points:

(6 points)

Deadline: April 21st, before the lecture. The websites for lecture and exercises can be found at

http://www.or.uni-bonn.de/lectures/ss16/ss16.html

In case of any questions feel free to contact me at saccardi@or.uni-bonn.de.