Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2016 Prof. Dr. Stefan Hougardy Siad Daboul

Exercise Sheet 10

Problem 10.1. (4 points)

Show that the Contraction Lemma still holds in the case when edges with length larger than 0 are added between terminals. Hereby, parallel edges are allowed.

Problem 10.2. (4 points)

The METRIC BIPARTITE TRAVELING SALESMAN PROBLEM is the problem of finding a Hamiltonian circuit of minimum cost in a bipartite graph G with a nonnegative cost function c satisfying $c(\{a,b\}) + c(\{a',b\}) + c(\{a',b'\}) \ge c(\{a,b'\})$ for $\{a,b\}, \{a',b\}, \{a,b'\}, \{a',b'\} \in E(G)$.

Prove that for any k, if there is a k-factor approximation algorithm for the METRIC BIPARTITE TRAVELING SALESMAN PROBLEM, there is also a k-factor approximation algorithm for the METRIC TRAVELING SALESMAN PROBLEM.

Problem 10.3. (4 points)

Consider the following algorithm for the SYMMETRIC TRAVELING SALESMAN PROBLEM with triangle inequality:

Start with an arbitrary city $u \in V$. Find a shortest edge $e = \{u, v\} \in {V \choose 2}$ connecting u to another city v. This yields a subtour T = (u, v, u). Let $U := V \setminus \{u, v\}$. Repeat the following steps until $U = \emptyset$:

- (i) Find $w \in U$ with shortest distance to one of the nodes in T.
- (ii) Add w to T between two neighbouring nodes $i, j \in T$ (by deleting edge $\{i, j\}$ and connecting i and j with w), such that the cost of the new tour is minimized, i.e. find neighbouring $i, j \in T$ such that that d(i, w) + d(w, j) d(i, j) is minimum. Remove w from U afterwards.

Show that this is a 2-approximation algorithm.

Problem 10.4. (4 points)

Consider the restriction of the TRAVELING SALESMAN PROBLEM to complete graphs in which all edge lengths are either 1 or 2. Give a $\frac{4}{3}$ -approximation algorithm for this problem.

Please hand in your solutions on Tuesday, June 28th, before the lecture.