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Problem 10.1. (4 points)

Show that the Contraction Lemma still holds in the case when edges with length larger

than 0 are added between terminals. Hereby, parallel edges are allowed.

Problem 10.2. (4 points)

The Metric Bipartite Traveling Salesman Problem is the problem of finding

a Hamiltonian circuit of minimum cost in a bipartite graph G with a nonnegative cost

function c satisfying c({a, b}) + c({a′, b}) + c({a′, b′}) ≥ c({a, b′}) for {a, b}, {a′, b}, {a, b′},
{a′, b′} ∈ E(G).

Prove that for any k, if there is a k-factor approximation algorithm for the Metric

Bipartite Traveling Salesman Problem, there is also a k-factor approximation

algorithm for the Metric Traveling Salesman Problem.

Problem 10.3. (4 points)

Consider the following algorithm for the Symmetric Traveling Salesman Problem

with triangle inequality:

Start with an arbitrary city u ∈ V . Find a shortest edge e = {u, v} ∈
(
V
2

)
connecting u

to another city v. This yields a subtour T = (u, v, u). Let U := V \ {u, v}. Repeat the

following steps until U = ∅:

(i) Find w ∈ U with shortest distance to one of the nodes in T .

(ii) Add w to T between two neighbouring nodes i, j ∈ T (by deleting edge {i, j} and

connecting i and j with w), such that the cost of the new tour is minimized, i.e. find

neighbouring i, j ∈ T such that that d(i, w) + d(w, j)− d(i, j) is minimum. Remove

w from U afterwards.

Show that this is a 2-approximation algorithm.

Problem 10.4. (4 points)

Consider the restriction of the Traveling Salesman Problem to complete graphs

in which all edge lengths are either 1 or 2. Give a 4
3
-approximation algorithm for this

problem.

Please hand in your solutions on Tuesday, June 28th, before the lecture.


