Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2016 Prof. Dr. Stefan Hougardy Siad Daboul

Exercise Sheet 8

Problem 8.1. (4 points)

Let $T = \{t_1, t_2, \ldots, t_n\} \subset \mathbb{R}^2$ be a finite set of terminals in the rectilinear plane. Let $x, y : T \to \mathbb{R}$ be the projection on the first and second coordinate. Show that if $x(t_i) < x(t_{i+1})$ for $i = 1, \ldots, n-1$ and $|\{y(t) : t \in T\}| = k$ where k is some fixed constant, the STEINER TREE PROBLEM can be solved in polynomial time.

Hint: You may use without a proof that every steiner point is of the form $(x(t_i), y(t_j))$ for some $i, j \in \{1, ..., n\}$.

Problem 8.2. (4 points)

Consider the restriction \mathcal{P} of the unweighted VERTEX COVER PROBLEM to graphs where the maximum degree of every vertex is bounded by a constant B.

Show: If there exists a polynomial time approximation algorithm for the STEINER TREE PROBLEM with performance ratio $1+\epsilon$, then there exists a polynomial time approximation algorithm for problem \mathcal{P} with performance ratio $1 + (B+1)\epsilon$.

Problem 8.3. (4 points)

Consider the following algorithm for the GRAPH STEINER TREE PROBLEM with 3 terminals v_1 , v_2 , and v_3 : Find a shortest path P between v_1 and v_2 and let a be the distance of v_3 to P. Then find a vertex z minimizing $\sum_{i=1}^{3} \text{dist}(v_i, z)$ under the conditions

- (i) $\operatorname{dist}(v_i, z) \leq \operatorname{dist}(v_1, v_2)$ for $i \in \{1, 2\}$ and
- (ii) dist $(v_3, z) \leq a$.

The algorithm returns the union of the shortest paths from z to the terminals. Show that the algorithm can be implemented in $\mathcal{O}(m + n \log n)$ and works correctly.

Problem 8.4. (4 points)

Give an $\mathcal{O}(n^3 t^2)$ algorithm for the STEINER TREE PROBLEM in planar graphs with all terminals lying on the outer face, where n is the number of vertices and t the number of terminals.

Hint: Modify the Dreyfus-Wagner algorithm.

Please hand in your solutions on Tuesday, June 14th, before the lecture.