Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2016 Prof. Dr. Stefan Hougardy Siad Daboul

Exercise Sheet 5

Problem 5.1. (2 points)

The KNAPSACK PROBLEM can be formulated as integer program:

$$\max\left\{\sum_{i=1}^{n} c_{i} x_{i} : \sum_{i=1}^{n} w_{i} x_{i} \le W, \, \forall \, 1 \le i \le n : x_{i} \in \{0, 1\}\right\}$$
(1)

For an instance \mathcal{I} , denote the optimum of (1) by $OPT(\mathcal{I})$ and let $LR(\mathcal{I})$ be the optimum of the linear relaxation, where $x_i \in \{0, 1\}$ is replaced by $0 \le x_i \le 1$.

Show that the *integrality gap*

$$\sup_{\mathcal{I}} \left\{ \frac{\mathrm{LR}(\mathcal{I})}{\mathrm{OPT}(\mathcal{I})} : \mathrm{OPT}(\mathcal{I}) \neq 0 \right\}$$

of the KNAPSACK PROBLEM is unbounded. What is the integrality gap of the KNAPSACK PROBLEM restricted to instances with $w_i \leq W$ for all i = 1, ..., n?

Problem 5.2. (5 points)

Show that the KNAPSACK PROBLEM given in exercise 5.1 remains NP-complete if we require $x_i \in \mathbb{Z}_{\geq 0}$ instead of $x_i \in \{0, 1\}$ for $i = 1, \ldots, n$.

Problem 5.3. (4 points)

Describe a polynomial-time combinatorial algorithm for the FRACTIONAL MULTI KNAP-SACK PROBLEM: Given natural numbers $n, m \in \mathbb{N}$ and w_i, c_{ij} as well as W_j for $1 \le i \le n$ and $1 \le j \le m$, find x_{ij} satisfying $\sum_{j=1}^m x_{ij} = 1$ for all $1 \le i \le n$ and $\sum_{i=1}^n x_{ij} w_i \le W_j$ for all $1 \le j \le m$ such that $\sum_{i=1}^n \sum_{j=1}^m x_{ij} c_{ij}$ is minimum.

Problem 5.4. (5 points)

Describe exact algorithms with running time $\mathcal{O}(2^{n/2})$ for the following problems:

- (i) SUBSET SUM: Given $K, n, x_1, \ldots, x_n \in \mathbb{N}$, find $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} x_i = K$.
- (ii) KNAPSACK PROBLEM (where n denotes the number of items).

Please hand in your solutions on Tuesday, May 24th, before the lecture.