Summer Term 2015 Prof. Dr. Stefan Hougardy Anna Hermann

Approximation Algorithms

Exercise Sheet 7

Exercise 7.1:

- (i) Give an algorithm for BIN PACKING with a constant number of different item sizes whose running time is polynomially bounded in the number n of items.
- (ii) Prove that for any fixed $\varepsilon > 0$ there exists a polynomial-time algorithm which for any instance $I = (a_1, \ldots, a_n)$ of BIN PACKING finds a packing using the optimum number of bins but possibly violating the capacity constraints by ε , i. e. an assignment $f : \{1, \ldots, n\} \to \{1, \ldots, \text{OPT}(I)\}$ with $\sum_{f(i)=j} a_i \leq 1 + \varepsilon$ for all $j \in \{1, \ldots, \text{OPT}(I)\}$.
- (iii) Show that the MULTIPROCESSOR SCHEDULING PROBLEM (see Exercise 6.3) has an approximation scheme.

(4 + 4 + 3 points)

Exercise 7.2:

Consider the following algorithm for the GRAPH STEINER TREE PROBLEM with 3 terminals v_1 , v_2 , and v_3 : Find a shortest path P between v_1 and v_2 and let a be the distance of v_3 to P. Then find a vertex z minimizing $\sum_{i=1}^{3} dist(v_i, z)$ under the conditions

- $dist(v_i, z) \le dist(v_1, v_2)$ for $i \in \{1, 2\}$ and
- $dist(v_3, z) \leq a$.

The algorithm returns the union of the shortest paths from z to the terminals. Show that the algorithm can be implemented in $\mathcal{O}(m + n \log n)$ and works correctly.

(3 points)

Exercise 7.3:

Let \mathcal{P} be an optimization problem. An algorithm A for \mathcal{P} is an *absolute approximation* algorithm for \mathcal{P} if there is a constant $k \in \mathbb{N}$ such that

$$|A(I) - \mathrm{OPT}| \le k$$

holds for any instance I of \mathcal{P} .

Prove that (provided $P \neq NP$) there is no absolute approximation algorithm for the GRAPH STEINER TREE PROBLEM.

(2 points)

Please turn in your solutions on Tuesday, June 9th, before the lecture.