Summer Term 2015 Prof. Dr. Stefan Hougardy Anna Hermann

Approximation Algorithms

Exercise Sheet 5

Exercise 5.1:

The KNAPSACK PROBLEM can be formulated as integer program:

$$\max\left\{\sum_{i=1}^{n} c_{i} x_{i} : \sum_{i=1}^{n} w_{i} x_{i} \le W, \, x_{i} \in \{0,1\} \,\forall \, 1 \le i \le n\right\}$$
(1)

For an instance \mathcal{I} , denote the optimum of (1) by $OPT(\mathcal{I})$ and let $LR(\mathcal{I})$ be the optimum of the linear relaxation, where $x_i \in \{0, 1\}$ is replaced by $0 \le x_i \le 1$. Show that the *integrality gap*

$$\sup_{\mathcal{I}} \left\{ \frac{\mathrm{LR}(\mathcal{I})}{\mathrm{OPT}(\mathcal{I})} : \mathrm{OPT}(\mathcal{I}) \neq 0 \right\}$$

of the KNAPSACK PROBLEM is unbounded. What is the integrality gap of the KNAP-SACK PROBLEM restricted to instances with $w_i \leq W$ for all i = 1, ..., n? (2 points)

Exercise 5.2:

Describe a $\frac{3}{4}$ -approximation algorithm for the KNAPSACK PROBLEM with running time $\mathcal{O}(n^3)$ and give a proof of the approximation ratio.

Note: You may not use the FPTAS for KNAPSACK.

Hint: The basic idea is to run, for every pair of items, a $\frac{1}{2}$ -approximation algorithm on a subset of the remaining elements. (5 points)

Exercise 5.3:

Consider the FRACTIONAL MULTI KNAPSACK PROBLEM: Given natural numbers $n, m \in \mathbb{N}$ and weights w_i , W_j as well as costs c_{ij} for $1 \leq i \leq n$ and $1 \leq j \leq m$, find $x_{ij} \in [0,1]$ satisfying $\sum_{j=1}^{m} x_{ij} = 1$ for all $1 \leq i \leq n$ and $\sum_{i=1}^{n} x_{ij}w_i \leq W_j$ for all $1 \leq j \leq m$ such that $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}c_{ij}$ is minimum.

State a polynomial-time combinatorial algorithm for this problem.

(4 points)

Exercise 5.4:

Let \mathcal{P} be an optimization problem such that any instance I of \mathcal{P} consists of a list of non-negative integers, with $\operatorname{largest}(I)$ the largest of these integers. We call \mathcal{P} strongly NP-hard if there is a polynomial p such that the restriction of \mathcal{P} to instances I satisfying $\operatorname{largest}(I) \leq p(\operatorname{size}(I))$ is NP-hard.

(i) Show that if \mathcal{P} is strongly NP-hard with integral objective function satisfying

$$OPT(I) \le q(size(I), largest(I))$$

for some polynomial q and all instances I, then \mathcal{P} has no fully polynomial approximation scheme unless P = NP.

Consider the following generalization of the KNAPSACK PROBLEM: Given $n \in \mathbb{N}$ items with weight $w_j \in \mathbb{N}$ for $1 \leq j \leq n$ together with $W \in \mathbb{N}$ and costs $c_{ij} \in \mathbb{N}$ for $i, j \in \mathbb{N}$, $1 \leq i < j \leq n$, determine a subset $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} w_i \leq W$ such that the overall cost $\sum_{i,j \in S: i < j} c_{ij}$ is maximum.

(ii) Show that (provided $P \neq NP$) no fully polynomial approximation scheme for this problem exists.

(2+3 points)

Please turn in your solutions on Tuesday, May 19th, before the lecture.