Summer Term 2015 Prof. Dr. Stefan Hougardy Anna Hermann

## Approximation Algorithms

## Exercise Sheet 2

## Exercise 2.1:

In this exercise, we will prove that the following problem is NP-complete: Let G = (V, E) be an undirected graph. Is there a function

(\*)  $\alpha \colon E \to \{1, 2, 3\}$  s.t. for any vertex  $v \in V$  and any  $e, f \in \delta(v)$  with  $e \neq f$ ,

we have  $\alpha(e) \neq \alpha(f)$ ?

- (i) Let G = (V, E) be an undirected 3-regular graph with a function  $\alpha$  satisfying (\*). Let  $X \subseteq V$  and denote the number of edges  $e \in \delta(X)$  with  $\alpha(e) = i$  by  $n_i$ . Show that we have  $n_1 \equiv n_2 \equiv n_3 \mod 2$ .
- (ii) Consider the component H (see Figure 1) as a subset of a 3-regular graph with a, b, c, d, e as its only outgoing edges. Show that for any  $\alpha$  satisfying (\*), we have
  - $\alpha(a) = \alpha(b)$ , but  $\alpha(c), \alpha(d), \alpha(e)$  are pairwise different, or
  - $\alpha(c) = \alpha(d)$ , but  $\alpha(a), \alpha(b), \alpha(e)$  are pairwise different.
- (iii) Let  $t \in \mathbb{N}, t \geq 2$ . Use 2t copies of H to construct a subset  $H_t$  of a 3-regular graph with a partition of  $\delta(H_t)$  into t pairs of edges  $(e_i, f_i), i = 1, \ldots, t$ , s.t. for any  $\alpha$ satisfying (\*), we have either  $\alpha(e_i) = \alpha(f_i)$  for all i or  $\alpha(e_i) \neq \alpha(f_i)$  for all i.
- (iv) Consider the component K (see Figure 2) as a subset of a 3-regular graph. Show that for any  $\alpha$  satisfying (\*), at least one of the pairs  $(e_i, f_i)$  of outgoing edges fulfills  $\alpha(e_i) = \alpha(f_i)$ .
- (v) Prove the NP-completeness of the problem above.

*Hint:* Use a reduction of 3SAT and the components defined in (ii) - (iv). Associate a variable x with a copy of the component  $H_t$ , where t is the number of occurrences of x or  $\overline{x}$  in any clause.

(2+2+2+2+2 points)



Figure 1: The component H and its shorthand.



Figure 2: The component K.

## Exercise 2.2:

Consider the following algorithm for the MAXIMUM CUT problem: Given an undirected graph G = (V, E), find a set  $X \subseteq V$  maximizing  $|\delta(X)|$ . Start with  $X = \emptyset$ . If adding a single vertex to X or deleting a single vertex from X makes  $|\delta(X)|$  larger, then do so. Repeat until no improvement is possible.

- (i) Show that the algorithm is a  $\frac{1}{2}$ -factor approximation algorithm.
- (ii) Does the algorithm always find an optimum solution for planar graphs, or for bipartite graphs?

(4+2 points)

Please turn in your solutions on Tuesday, April 28th, before the lecture.