Approximation Algorithms

Exercise Sheet 10

 Algorithm 1: Steiner Tree Approximation

 Input: $G = (V, E), R \subseteq V, c: E \to \mathbb{R}_{>0}$

 Output: a Steiner tree T

 $I := \emptyset$

 repeat

 foreach $v \in V \setminus (R \cup I)$ do

 $I' := I \cup \{v\}$

 remove vertices from I' having degree 1 or 2 in $MST(R \cup I')$

 if $mst(R \cup I') < mst(R \cup I)$ then

 | I := I'

 until no improvement during last iteration

 return a Steiner tree corresponding to the MST computed in the last iteration

Exercise 10.1:

Consider the STEINER TREE PROBLEM restricted to instances for which $V \setminus R$ forms a stable set. Give a tight analysis of the approximation algorithm for this problem described by Algorithm 1, i.e., determine the number $\alpha \geq 1$ such that

- (i) Algorithm 1 is an α -approximation for this restriction of the STEINER TREE PROBLEM and
- (ii) there is a class of instances on which the algorithm does not necessarily perform better than an α -approximation.

Here, we denote by MST(R) a minimum spanning tree in the terminal distance graph for the vertex set R and by mst(R) its length.

(4 points)

Exercise 10.2:

Consider the relative greedy algorithm.

- (i) For every $k \in \mathbb{N}$ describe an instance for which the relative greedy algorithm does not necessarily find an optimum solution.
- (ii) Can you improve the approximation guarantee of the algorithm for k = 5?

(2+1 points)

Exercise 10.3:

Consider the restriction of the TRAVELING SALESMAN PROBLEM to complete graphs in which all edge lengths are either 1 or 2. Give a $\frac{4}{3}$ -approximation algorithm for this problem.

Hint: Compute a minimum-weight perfect 2-matching.

(3 points)

Exercise 10.4:

Consider the following algorithm for the SYMMETRIC TRAVELING SALESMAN PROB-LEM with triangle inequality:

Consider an instance (K_n, c) . Start with an arbitrary node $u \in V(K_n)$. Find a shortest edge $e = \{u, v\} \in E(K_n)$ connecting u to another node v. This yields a subtour T = (u, v, u). Let $U := V \setminus \{u, v\}$. Repeat the following steps until $U = \emptyset$:

- (i) Find $w \in U$ with shortest distance to one of the nodes in T.
- (ii) Add w to T between two neighboring nodes $i, j \in T$ (by deleting edge $\{i, j\}$ and connecting i and j with w) such that the cost of the new tour is minimized, i.e., find neighbouring $i, j \in T$ such that that d(i, w) + d(w, j) d(i, j) is minimum. Remove w from U afterwards.

Show that this is a 2-approximation algorithm.

(3 points)

Exercise 10.5:

Show that the following problem is NP-complete: Given a graph G and a Hamiltonian circuit $C \subseteq E(G)$, is there another Hamiltonian circuit $C' \subseteq E(G)$?

Hint: Use the gadget below.

(3 points)

Please turn in your solutions on Tuesday, June 30th, before the lecture.