Research Institute for Discrete Mathematics Chip Design Summer Term 2014

Prof. Dr. S. Hougardy R. Scheifele, M. Sc.

Exercise Set 4

Exercise 4.1:

For a finite set $V \subseteq \mathbb{R}^2$, the ℓ_1 -Voronoi diagram consists of the regions

$$P_v := \left\{ x \in \mathbb{R}^2 : ||x - v||_1 = \min_{w \in V} ||x - w||_1 \right\}$$

for $v \in V$. The ℓ_1 -Delaunay triangulation of V is the graph

$$(V, \{\{v, w\} \subseteq V, v \neq w, |P_v \cap P_w| > 1\}).$$

Assume that the slope of each straight line connecting two elements of V is neither 1 nor -1.

- a) Show that the ℓ_1 -Delaunay triangulation is a planar graph.
- b) Show how a rectilinear minimum spanning tree for V can be computed in $O(|V| \log |V|)$ time. You can use the fact that the Delaunay triangulation can be computed in $O(|V| \log |V|)$ time.
- c) Show that the ℓ_1 -Delaunay triangulation is not necessarily planar without the requirement that the slope of each straight line connecting two elements of V is neither 1 nor -1.

$$(2 + 3 + 2 \text{ points})$$

Exercise 4.2:

Let N be an instance of the Rectilinear Steiner Tree Problem and $r \in N$. For a rectilinear Steiner tree Y we denote by f(Y) the maximum length of a path from r to any $N \setminus r$ in Y.

- a) Describe an instance in which no shortest Steiner tree minimizes f(Y) and no Steiner tree minimizing f(Y) is shortest.
- b) Consider the problem of finding a shortest Steiner tree Y minimizing f(Y) among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

(1+3 points)

Exercise 4.3:

Given a complete graph G = (V, E) with metric edge costs $dist : V \times V \to \mathbb{R}_{\geq 0}$ and a spanning arborescence Y_0 with root s (i.e. $V(Y_0) = V(G)$) and $\varepsilon > 0$, consider the following algorithm connstructing a spanning arborescence Y with root s:

- 1. Start with $Y = Y_0$.
- 2. Traverse the edges of Y_0 in depth-first search order, i.e. every edge is traversed twice.
- 3. If e = (v, w) is traversed for the first time: Check if $dist_Y(s, w) > (1 + \varepsilon) \cdot dist(s, w)$. If true, delete the edge (v, w) from Y and add the edge (s, w) instead.
- 4. If e = (v, w) is traversed for the second time: Check if $dist_Y(s, v) > dist_Y(s, w) + dist(v, w)$. If true, delete the incoming edge of v from Y and add the edge (w, v) instead.

Here $dist_Y(x, y)$ denotes the length of the x-y path in Y w.r.t. to dist for $x, y \in V$. Prove: The above algorithm computes a spanning arborescence Y with

- $dist_Y(s, v) \leq (1 + \varepsilon) \cdot dist(s, v)$ and
- $\sum_{(v,w)\in E(Y)} dist(v,w) \le (1+\frac{2}{\varepsilon}) \sum_{(v,w)\in E(Y_0)} dist(v,w)$

and can be implemented in $\mathcal{O}(|V(Y_0)|)$ time.

(5 points)

Deadline: Thursday, May 8, before the lecture. The websites for lecture and exercises are linked at

http://www.or.uni-bonn.de/lectures/ss14/ss14.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de .