Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2014 Prof. Dr. J. Vygen S. Spirkl

Exercise Sheet 7

Exercise 7.1:

Prove that the MINIMUM VERTEX COVER problem has no absolute approximation algorithm unless P = NP.

(3 points)

Exercise 7.2: Prove that MAX 2-SAT is *MAXSNP*-hard.

(3 points)

Exercise 7.3:

Show that the MAXIMUM CLIQUE problem is L-reducible to the SET PACKING problem: given a set system (U, \mathcal{S}) , find a maximum cardinality subfamily $\mathcal{R} \subseteq \mathcal{S}$ whose elements are pairwise disjoint. What does this imply for the approximability of SET PACKING?

(3 points)

Exercise 7.4:

Prove that there are constants $d \in \mathbb{N}$ and $\gamma > 0$ such that for all $n \in \mathbb{N}$, there exists a (not necessarily simple) *d*-regular γ -expander with 2n vertices.

- (i) Show that $\frac{\binom{m}{k}}{\binom{n}{k}} \leq \left(\frac{m}{n}\right)^k$ for $k, m, n \in \mathbb{N}$ with $k \leq m \leq n$.
- (ii) Construct a *d*-regular bipartite graph $G = (A \cup B, E)$ with 2n vertices, where E is the union of *d* randomly chosen perfect matchings in the complete bipartite graph $(A \cup B, A \times B)$. Show that there are constants $d \in \mathbb{N}$, $\gamma > 0$ and $\varepsilon > 0$ such that for all *n* the probability that there are sets $A' \subseteq A$, $B' \subseteq B$ with $1 \leq |A'| + |B'| \leq n$ and $|A'| \leq |B'| \leq (1 + \gamma)|A'|$ satisfying $\Gamma(A') = B'$ is less than $1 - \varepsilon$.
- (iii) Show that $d \in \mathbb{N}$, $\gamma > 0$ and $\varepsilon > 0$ can be chosen such that for all n, the probability that G is a γ -expander is at least ε .

Hint: You may use that
$$\left(\frac{n}{k}\right)^k \leq {\binom{n}{k}} \leq {\left(\frac{n \cdot e}{k}\right)^k}$$
 for $k, n \in \mathbb{N}$ with $k \leq n$.
(1 + 4 + 2 points)

Please hand in your solutions before the lecture on Tuesday, May 27th, at 2:15 PM.