Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2014 Prof. Dr. J. Vygen S. Spirkl

Exercise Sheet 5

Exercise 5.1:

For an instance of BIN PACKING, let (s_1, \ldots, s_m) denote the different item sizes and (b_1, \ldots, b_m) their multiplicities. Denote by

$$\{T_1, \dots, T_N\} = \left\{ (k_1, \dots, k_m) \in \mathbb{Z}_+^m : \sum_{i=1}^m k_i s_i \le 1 \right\}$$

all possible configurations for a single bin, where $T_j = (t_{j1}, \ldots, t_{jm})$ for $j = 1, \ldots, N$. Consider the LP

$$\max yb$$
s. t.
$$\sum_{i=1}^{m} t_{ji}y_i \leq 1$$

$$(j = 1, \dots, N)$$

$$y_i \geq 0$$

$$(i = 1, \dots, m)$$

which is the dual of the BIN PACKING LP. Show that if $s_1 > s_2 > \cdots > s_m$, then this LP always has an optimum solution with $y_1 \ge y_2 \ge \cdots \ge y_m$.

(3 points)

Exercise 5.2:

Show that the second step of the FERNANDEZ-DE-LA-VEGA-LUEKER ALGORITHM, which partitions the instance according to the item sizes, can be implemented with running time $\mathcal{O}(n \log \frac{1}{\epsilon})$.

Hint: You may use that the k-smallest of n numbers can be found in $\mathcal{O}(n)$ time.

(3 points)

Exercise 5.3:

- (i) Prove that for any fixed $\varepsilon > 0$ there exists a polynomial-time algorithm which for any instance $I = (a_1, \ldots, a_n)$ of the BIN PACKING problem finds a packing using the optimum number of bins but possibly violating the capacity constraints by ε , i. e. an $f : \{1, \ldots, m\} \to \{1, \ldots, \text{OPT}(I)\}$ with $\sum_{f(i)=j} a_i \leq 1 + \varepsilon$ for all $j \in \{1, \ldots, \text{OPT}(I)\}$. *Hint:* Use Exercise 4.3.
- (ii) Use this to show that the MULTIPROCESSOR SCHEDULING PROBLEM (see Exercise 4.1) has an approximation scheme.

(4+2 points)

Please hand in your solutions before the lecture on Tuesday, May 13th, at 2:15 PM.