Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2014 Prof. Dr. J. Vygen S. Spirkl

Exercise Sheet 4

Exercise 4.1:

Consider the MULTIPROCESSOR SCHEDULING PROBLEM: Given a finite set A of tasks, a processing time $t(a) \in \mathbb{R}_+$ for each $a \in A$ and a number m of processors, find a partition $A = \bigcup_{i=1}^{m} A_i$ of A such that $\max_{i=1}^{m} \{\sum_{a \in A_i} t(a)\}$ is minimum.

- (i) Consider a greedy algorithm that successively assigns jobs (in an arbitrary order) to the currently least used machine. Show that this is a 2-approximation algorithm.
- (ii) Show that for fixed values of m the MULTIPROCESSOR SCHEDULING PROBLEM has an approximation scheme.

(2+3 points)

Exercise 4.2:

Let $A = (a_i)_{1 \le i \le p}$ and $B = (b_j)_{1 \le j \le q}$ be two inputs of the BIN PACKING problem. We write $A \subseteq B$ if there are indices $1 \le k_1 < k_2 < \cdots < k_p \le q$ with $a_i = b_{k_i}$ for $1 \le i \le p$. An algorithm for the BIN PACKING problem is called monotone if for inputs A and Bwith $A \subseteq B$ the algorithm needs at least as many bins for B as for A. Show:

- (i) NEXT FIT is monotone.
- (ii) FIRST FIT is not monotone.

(2+2 points)

Exercise 4.3:

Give an algorithm for BIN PACKING restricted to instances with a constant number of different item sizes whose running time is polynomially bounded in the number n of items.

Hint: Compute which subsets of items can be packed into i bins for i = 1, ... using dynamic programming.

(3 points)

Please hand in your solutions before the lecture on Tuesday, May 6th, at 2:15 PM.