Solution to Exercise 4.3 (d)

Let \(T_I \) denote the initial set \(T \) and \(n := |T_I| \). For \(z \in \mathbb{R}_{>0} \) let \(T_z := \{ t \in T : ||t - r||_1 \geq z \} \). We construct the tree in a sweep-line manner starting with \(z = \max \{ ||t - r||_1 : t \in T_I \} + 1 \) and ending with \(z = 0 \). At each step of the algorithm we try to include Steiner points which have distance \(z \) from \(r \).

During the whole algorithm we store \(T_z \) in an array sorted circularly as follows:

1. elements \(p \) s.t. \(p - r \) lies in the 1st quadrant ordered by \(x \)-coord. in non-decr. order
2. elements \(p \) s.t. \(p - r \) lies in the 2nd quadrant ordered by \(x \)-coord. in non-incr. order
3. elements \(p \) s.t. \(p - r \) lies in the 3rd quadrant ordered by \(x \)-coord. in non-incr. order
4. elements \(p \) s.t. \(p - r \) lies in the 4th quadrant ordered by \(x \)-coord. in non-decr. order

We say that two points \(t_1, t_2 \in T_z \) are neighbors, if they are adjacent in \(T_z \) w.r.t. that ordering (or if one of them is the first and the other is the last element).

We store the set \(S_z := (T \setminus T_z) \cup \{ \text{med}(t_1, t_2, r) : t_1, t_2 \in T_z \text{ neighbors} \} \) in a 2-heap with key \(||. - r||_1 \) such that we can determine the element with maximum key very fast. By convention, we say that in case of ties, \textsc{deletemax} returns elements of \(T \setminus T_z \) first.

\textbf{Claim:} If \(t_1, t_2 \in T \) s.t. \(||\text{med}(t_1, t_2, r) - r||_1 = z \), then there are neighbors \(t'_1, t'_2 \in T_z \) such that \(||\text{med}(t'_1, t'_2, r) - r||_1 \geq z \).

\textbf{Proof:} Assume that the claim is wrong. We select a counter-example \(t_1, t_2 \) such that \(t_1 \) and \(t_2 \) are non-neighbors which are as close as possible w.r.t. the ordering of \(T_z \). W.l.o.g., we may assume that \(r = (0, 0) \) and \(t_1 \) is in the 1st quadrant. If \(t_2 \) is in the 3rd quadrant, \(\text{med}(t_1, t_2, r) = r \) and the claim is trivial. Let \(t_2 \) be in the 2nd quadrant. We have: \(\text{med}(t_1, t_2, r) = (\min\{x(t_1), x(t_2)\}, 0) = (z, 0) \). Let \(t \in T_z \) come after \(t_1 \) but before \(t_2 \) in the ordering of \(T_z \). Since \(x(t_1) \leq x(t) \) if \(t \) is in the first quadrant and \(x(t_2) \leq x(t) \) if \(t \) is in the second quadrant, it holds that \(\min\{x(t_1), x(t_2)\} \leq \min\{x(t_1), x(t)\} \) and hence, \(||\text{med}(t_1, t, r) - r||_1 \geq ||\text{med}(t_1, t_2, r) - r||_1 = z \).

Let \(t_2 \) be in the 4th quadrant. We have: \(\text{med}(t_1, t_2, r) = (0, \min\{y(t_1), y(t_2)\}) = (0, z) \). Since \(t_1 \) and \(t_2 \) are non-neighbors, \(t_1 \) is not the first or \(t_4 \) is not the last element of \(T_z \). W.l.o.g. let the first case be true (the other case is similar). Let \(t \) be the first element of \(T_z \). If \(y(t) \geq z \), we are done. Otherwise, \(0 \leq y(t) < z \leq y(t_1) \) and thus, \(\text{med}(t, t_1, r) = t \) which concludes the case. Finally, assume that both \(t_1 \) and \(t_2 \) are in the first quadrant, w.l.o.g. \(x(t_1) \leq x(t_2) \). Let \(t \) be any vertex between \(t_1 \) and \(t_2 \). If \(y(t_1) \leq y(t) \) or \(y(t) \leq y(t_2) \), we are done. Otherwise, \(y(t_1) > y(t) > y(t_2) \) and \(||\text{med}(t_1, t, r) - r||_1 = x(t_1) + y(t) \geq x(t_1) + y(t_2) = ||\text{med}(t_1, t_2, r) - r||_1 = z \). □
Assume, we have already computed T_z and S_z for some $z > 0$ and that we have already included all Steiner points with distance larger than z from r. Let $t_1, t_2 \in T$ such that $||\text{med}(t_1, t_2, r) - r||_1$ is maximum. There are two cases:

Case (i): $||\text{med}(t_1, t_2, r) - r||_1 < z$. Then, we cannot include a Steiner point with distance z from r. All further Steiner points have distance at least $z' := \max\{|s - r|_1 : s \in S_z\}$ which is exactly the maximum key of the heap. We can decrease z to z', include all sinks with distance z' to the root to T_z and update S_z appropriately. Let T' be the set of new elements in T_z. The number of elements we have to include to S_z (i.e. points which arise by joining an element of T' with a neighbor) as well as the points which we have to remove from S_z (i.e. T' and points which arise by joining elements in T_z which are no longer neighbors) is at most $c \cdot |T'|$ for a constant c.

We can determine T' by $|T'| \text{ DELETEMAX}$ operations. We can determine the correct position of a new element in an ordered list in $O(\log(|T_z|))$ time. Deleting from or inserting into a 2-heap takes $O(\log(n))$ time. Hence, this iteration can be performed in $O(|T'| \cdot \log(n))$ time.

Case (ii): $||\text{med}(t_1, t_2, r) - r||_1 = z$. By the claim, t_1 and t_2 can be chosen to be neighbors in T_z and hence, $\text{med}(t_1, t_2, r)$ is an element of S_z with maximum key. The key of each sink in S_z is strictly smaller than z.

Hence, we can determine $t' := \text{med}(t_1, t_2, r)$ (or a median-point with the same distance to r) by a DELETEMAX operation. We include t' to T_z but delete t_1 and t_2. We delete all (at most 3) points arising by joining t_1 or t_2 with a neighbor from S_z (t' is among them) and include all (at most 2) points arising by joining t' with a neighbor. All of these operations need $O(\log(n))$ time.

When the heap is empty, $|T_z| = 1$ and we can connect the remaining sink with r.

Since all of the sets T' as defined in case (i) are pairwise disjoint subsets of T_I, all case (i)-operations in total take $O(n \cdot \log(n))$ time.

All applications of case (ii) result in the insertion of a Steiner point. Let S be the set of Steiner points. By construction, $|\delta(s)| = 3$ for each $s \in S$ and $|\delta(t)| = 1$ for $t \in T_I \cup \{r\}$. Thus,

$$|(S| + n + 1) - 1 = \frac{1}{2} \sum_{v \in S \cup T_I \cup \{r\}} |\delta(v)| = \frac{1}{2} \cdot (3|S| + n + 1)$$

which implies $|S| = n - 1$. Hence, all case (ii)-operations in total require $O(n \cdot \log(n))$ time.