Bonn Problem-Solving Seminar, 2013

Prerequisites

András Frank frank@cs.elte.hu

NOTATION

 $\varrho_D(X)$: in-degree of a subset $X \subseteq V$ in a digraph D = (V, A) $\delta_D(X)$: out-degree of a subset $X \subseteq V$ in a digraph D = (V, A) $d_G(X)$: degree of a subset $X \subseteq V$ in an unditected graph G = (V, E) $d_G(A, B)$: the number of edges connecting A - B and B - A $\Gamma(X)$: set of nodes outside X that have at least one neighbour in X

NOTIONS

Tree, forests, arborescence, branching Euler graph: d(X) is even for every $X \subseteq V$ Euler digraph: $\delta(X) = \varrho(X)$ for every $X \subseteq V$ Smooth digraph: $|\varrho(v) - \delta(v)|$ for every node $v \in V$ Partially ordered set (poset), chain, antichain strongly connected digraph k-edge-connected digraph root-connected digraph: no dicut exists that is oriented toward a root r_0 . Equivalently, every node is reachable from r_0

k-node-connected graph or digraph one-way path or circuit in a digraph (sometimes: directed directed path/circuit or dipath/di-circuit) st-path: a one-way path from s to t one-way cut (sometimes: directed cut or dicut) in a digraph complete graph, complete bipartite graph, tournament chromatic number, chromatic index flows, ciculations Totally unimodular (TU) matrix Polyhedron, Polytope

THEOREMS

Gallai: in an edge-weighted digraph there is no one-way (directed) circuit of negative total weight if and only of there is a feasible potential Kőnig-Hall on max matching Menger on disjont paths Max-flow Min-cut Hoffman on feasible circulations Kőnig's edge-colouring Tutte on perfect matching Tutte on maximum number of disjoint spanning trees Nash-Williams on minimum number of covering forests Edmonds on maximum number of disjoint arborescences Dilworth on maximum antichain and minimum chain-decomposition of a poset Mirsky (=polar Dilworth) on maximum chain and minimum antichain-decomposition Farkas Lemma Duality theorem of linear programming. ALGORITHMS:

Depth-first search (DFS), Breadth-first search (BFS) Greedy algorithms for min-cost tree. Dijkstra Bellman-Ford (or variant) for finding negative circuit or feasible potential. Alternating path for maximum matchings in bipartite graph, Max-flow Min-cut algorithm of Ford and Fulkerson