Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2013 Prof. Dr. J. Vygen P. Ochsendorf, M. Sc.

Exercise Sheet 11

Exercise 11.1:

Show that the problem of finding a minimum-cost *s*-*t*-path in an undirected graph G with edge costs $c : E(G) \to \mathbb{R}_{\geq 0}$ can be regarded as a special case of the SURVIVABLE NETWORK DESIGN PROBLEM. Does JAIN'S ALGORITHM solve it optimally?

(3 points)

Exercise 11.2:

Show that in a slight variant of JAIN'S ALGORITHM the number of iterations in which we have to solve an LP can be bounded by

- (a) $2n^2$
- (b) 2n

where n := |V(G)|. For this we set $x_e := x_e + \lfloor y_e \rfloor$ for all e if some $y_e \ge 1$, otherwise we update x as before.

Hint:

- (a) Conclude from Lemma 20.32 that in the second case all but 2n 2 edges can be deleted.
- (b) Delete one more edge in each iteration.

(3+2 points)

Exercise 11.3:

Let $PCP'(\log n, 1)$ be defined as $PCP(\log n, 1)$ but with error probability (soundness) $1 - \frac{1}{size(x)}$ for input x instead of $\frac{1}{2}$. Prove that $NP \subseteq PCP'(\log n, 1)$. Note: You may not use the PCP-Theorem.

(4 points)

Please return your solutions before the lecture on Tuesday, July 2nd, 2:15 PM.