Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2013 Prof. Dr. J. Vygen P. Ochsendorf, M. Sc.

Exercise Sheet 3

Exercise 3.1:

An instance of MAXIMUM SATISFIABILITY is called k-satisfiable if any k of its clauses can be satisfied simultaneously. Let r_k be the infimum of the fraction of clauses that one can satisfy in any k-satisfiable instance. Show:

1.
$$r_1 = \frac{1}{2}$$
.

2.
$$r_2 = (\sqrt{5} - 1)/2$$
.

Hint: Set literals appearing in one-element clauses to *true* with probability a (for some 1/2 < a < 1) and assign the remaining variables to *true* with probability 1/2. Derandomize this and choose a appropriately.

(4 points)

Exercise 3.2:

The KNAPSACK PROBLEM for an instance \mathcal{I} can be formulated as integer program:

$$\max\left\{\sum_{i=1}^{n} c_{i} x_{i} \left| \sum_{i=1}^{n} w_{i} x_{i} \leq W, x_{i} \in \{0, 1\} \,\forall 1 \leq i \leq n \right\} \right\}$$
(1)

Denote the optimum of (1) by $OPT(\mathcal{I})$ and let $LR(\mathcal{I})$ be the optimum of the linear relaxation where $x_i \in \{0, 1\}$ is replaced by $0 \le x_i \le 1$. Show that the *integrality gap* sup $\left\{ \frac{LR(\mathcal{I})}{OPT(\mathcal{I})} \mid OPT(\mathcal{I}) \ne 0 \right\}$ of the KNAPSACK PROBLEM is unbounded. Show that this doesn't remain valid if the definition of the KNAPSACK

(4 points)

Exercise 3.3:

PROBLEM additionally requires $w_i \leq W$ for all w_i .

Consider the FRACTIONAL MULTI KNAPSACK PROBLEM: Given natural numbers $n, m \in \mathbb{N}$ and w_i , c_{ij} as well as W_j for $1 \leq i \leq n$ and $1 \leq j \leq m$, find x_{ij} satisfying $\sum_{j=1}^m x_{ij} = 1$ for all $1 \leq i \leq n$ and $\sum_{i=1}^n x_{ij} w_i \leq W_j$ for all $1 \leq j \leq m$ such that $\sum_{i=1}^n \sum_{j=1}^m x_{ij} c_{ij}$ is minimum.

State a polynomial-time combinatorial algorithm for this problem or prove NP-hardness.

(4 points)

Exercise 3.4:

Describe exact algorithms with running time $O(2^{n/2})$ for the following problems:

- 1. SUBSET SUM: Given $K, n, x_1, \ldots, x_n \in \mathbb{N}$, find $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} x_i = K$.
- 2. KNAPSACK PROBLEM (where n denotes the number of items).

(4 points)

Please return your solutions before the lecture at Tuesday, April 30th, 2:15 PM.