Research Institute for Discrete Mathematics Approximation Algorithms Summer Term 2013 Prof. Dr. J. Vygen P. Ochsendorf, M. Sc.

Exercise Sheet 2

Exercise 2.1:

Given an undirected graph G and $k \in \mathbb{N}$, the STABLE SET problem asks whether a set $S \subseteq V(G)$ exists such that $|S| \geq k$ and $E(G[S]) = \emptyset$. Prove that STABLE SET is *NP*-complete even if restricted to graphs whose maximum degree is 4.

Hint: Use Exercise 1.1.

(4 points)

Exercise 2.2:

Given a set X of variables we recursively define Boolean Formulas: true and false are the Boolean formulas over X of length zero and the literals are the Boolean formulas of length one. The Boolean formulas of length $k \ge 2$ are the strings $(\psi \land \psi')$ and $(\psi \lor \psi')$ where ψ and ψ' are Boolean formulas of length l and l' $(l, l' \in \mathbb{N})$ with l + l' = k. We extend a truth assignment $T : X \to \{true, false\}$ by setting $T(\psi \land \psi') := T(\psi) \land T(\psi')$ as well as $T(\psi \lor \psi') := T(\psi) \lor T(\psi')$. Two Boolean formulas ψ and ψ' are equivalent if $T(\psi) = T(\psi')$ for every possible truth assignment T.

Given a set X of variables and a Boolean formula φ over X, the LOGIC MINIMIZATION problem asks for an equivalent Boolean formula of minimum length. Prove that LOGIC MINIMIZATION can be solved in polynomial time if and only if P = NP.

(4 points)

Exercise 2.3:

The LP relaxation of the MINIMUM WEIGHT VERTEX COVER problem is

$$\min\{cx: M^T x \ge 1, x \ge 0\}$$

where M is the incidence matrix of an undirected graph G and $c \in \mathbb{R}^{V(G)}_+$. A half-integral solution for this relaxation is one with entries 0, $\frac{1}{2}$ and 1 only.

- 1. Show that the above LP relaxation of the MINIMUM WEIGHT VERTEX COVER problem always has a half-integral optimum solution.
- 2. Use this to obtain a 2-approximation algorithm. Is the analysis tight?

(6+2 points)

Please return your solutions before the lecture at Tuesday, April 23rd, at 2:15 PM.