Exercise Sheet 1

Exercise 1.1:
Prove that Satisfiability remains NP-complete if each clause contains at most three literals and each variable occurs in at most three clauses.

(4 points)

Exercise 1.2:
The restriction of Satisfiability to instances where each clause consists of exactly two literals is called 2-Satisfiability. Prove that 2-Satisfiability is in P.

(4 points)

Exercise 1.3:
Formulate linear-time 2-factor approximation algorithms for the following optimization problems and prove performance ratio as well as running time:

1. Given an undirected, unweighted graph G, determine $v, w \in V(G)$ such that their distance is maximum.

2. Given a directed graph G with non-negative edge weights, find an acyclic subgraph of maximum weight.

3. **Maximum-Satisfiability**: Given an instance for Satisfiability, determine a truth assignment satisfying the maximum number of clauses.

4. **Maximum Weight Matching**: Given an undirected graph G with non-negative edge weights $c : E(G) \rightarrow \mathbb{R}_{\geq 0}$, find a matching $M \subseteq E(G)$ such that $\sum_{e \in M} c(e)$ is maximum.

(8 points)

Please return your solutions before the lecture at Tuesday, **April 16th, at 2:15 PM**.