Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2012 Prof. Dr. S. Hougardy Dipl.-Math. U. Suhl D. Rotter

Exercise Set 5

Exercise 1:

Describe exact algorithms with running times of $\mathcal{O}(2^{\frac{n}{2}})$ for the following problems:

- (i) SUBSET SUM, where n is the number of numbers.
- (ii) KNAPSACK, where n is the number of items.

(3+3 points)

Exercise 2:

Consider the FRACTIONAL MULTIKNAPSACK problem: Given natural numbers m, n, w_i, c_{ij} , and W_j for $1 \le i \le n$ and $1 \le j \le m$, find $x_{ij} \in [0, 1]$ satisfying $\sum_{j=1}^m x_{ij} = 1$ for all $1 \le i \le n$ and $\sum_{i=1}^n x_{ij} w_i \le W_j$ for all $1 \le j \le m$, such that $\sum_{i=1}^n \sum_{j=1}^m x_{ij} c_{ij}$ is minimum.

Provide a polynomial-time combinatorial algorithm for this problem or prove that it is NP-hard.

(4 points)

Exercise 3:

Prove that the greedy algorithm for the KNAPSACK Problem (take the element with the best $\frac{c_i}{w_i}$ ratio and add *i* to *S* until $\sum_{i \in S} w_i > W$) cannot achieve a constant approximation ratio.

(3 points)

Please return the exercises until Tuesday, May 8th, at 2:15 pm.