1

Research Institute for Discrete Mathematics Approximation Algorithms Summer term 2012 Prof. Dr. S. Hougardy Dipl.-Math. U. Suhl D. Rotter

Exercise Set 4

Exercise 1:

Describe an algorithm which decides if a graph G = (V, E) is 4-colourable with a running time of $O(|E| \cdot 2^{|V|})$.

(4 points)

Exercise 2:

Show that any 4-colourable graph with n vertices can be coloured with $O(n^{\frac{2}{3}})$ colours in polynomial time.

(4 points)

Exercise 3:

An instance of MAX-SAT is called k-satisfiable if any k of its clauses can be simultaneously satisfied. Let r_k be the infimum of the fraction of clauses that one can satisfy in any k-satisfiable instance.

- (a) Prove that $r_1 = \frac{1}{2}$
- (b) Prove that $r_2 = \frac{\sqrt{5}-1}{2}$ (Hint: Korte, Vygen: "Combinatorial Optimization. Theory and Algorithms.", Fourth Edition, Exercise 16.17.)

(1+4 points)

Exercise 4:

Given an undirected graph G = (V, E), find a set $X \subseteq V$ maximizing $|\delta(X)|$. Consider the following algorithm: Start with $X = \emptyset$. If adding a single vertex to X or deleting a single vertex from X makes $|\delta(X)|$ larger, then do so. Repeat until no improvement is possible.

- (a) Show that the algorithm runs in polynomial time.
- (b) Show that this is a $\frac{1}{2}$ -approximation algorithm.

(1+3 points)

Exercise 5: Show with a reduction from 3SAT that MAX-2-SAT is *NP*-hard.

(4 points)

Please return the exercises until Thursday, May 3rd, at 2:15 pm.