Scheduling
Online Algorithms

Tim Nieberg
General Introduction

- on-line scheduling can be seen as scheduling with incomplete information
- at certain points, decisions have to be made without knowing the complete instance
- depending on the way how new information becomes known, different on-line paradigms are possible
On-Line Scheduling

On-Line paradigms

- scheduling jobs one by one
 - in this paradigm jobs are ordered in some list (sequence)
 - jobs are presented one by one to the decision maker
 - the moment the job is presented, its characteristics get available
 - the scheduling decision for the job has to be taken before the next job is presented
 - the scheduling decision is irreversible

Remarks:

- scheduling jobs one by one is list scheduling!
- in Lecture 5, we have shown that list scheduling is a $2 - 1/m$-approximation for $P||C_{max}$
On-Line paradigms (cont.)

- jobs arrive over time
 - jobs become known at their release date
 - the scheduling decision for a job may be delayed
 - at any time all currently available jobs are at the disposal of the decision maker
 - decisions of the past are irreversible

Remark:
- we consider this paradigm
Performance measure

- Quality of an on-line algorithm is mostly measured by evaluating its worst case performance.
- As reference value the best off-line value is used.
- Has a 'game theoretic' character:
 - The on-line algorithm plays against an 'adversary'.
 - The adversary makes a sequence of requests (jobs) to be served by the on-line algorithm.
 - The adversary also serves the request, but only after it knows all requests.
 - The adversary tries to get the costs of the on-line algorithm as high as possible compared to its own cost.
Performance measure - competitive analysis

- an on-line algorithm is ρ-competitive if its objective value is no more than ρ times the optimal off-line value for all instances
- the competitive ratio is related to the approximation factor in off-line settings
Performance measure - competitive analysis

- an on-line algorithm is ρ-competitive if its objective value is no more than ρ times the optimal off-line value for all instances
- the competitive ratio is related to the approximation factor in off-line settings
- if *randomization* is allowed within the on-line algorithm (i.e. random choices are allowed) the expected objective value is used for the competitive analysis
Performance measure - lower bounds

- how much does one lose by not having complete information or how much is it worth to know the future?
On-Line Scheduling

Performance measure - lower bounds

- how much does one lose by not having complete information or how much is it worth to know the future?
- the competitive ratio of a specific on-line algorithm is not the answer to this problem
- a lower bound on the competitive ratio of every possible on-line algorithm answers the question!
- such lower bounds can be achieved by providing a specific set of instances on which no on-line algorithm can perform well
Problem $1 | r_j | \sum C_j$

- problem is NP-hard
- if all release dates are equal, the SPT-rule solves the problem
- in the general case, SPT (each time the machine gets idle, process an available job with smallest processing time) is an on-line algorithm
- Theorem: For problem $1 | r_j | \sum C_j$ the SPT-algorithm has not a constant competitive ratio.
 (proof on board)
- Can we do better?
- How good can we do?
Problem 1 |r_j| \sum C_j - lower bound

- Theorem: Any deterministic on-line algorithm for problem
1 |r_j| \sum C_j has a competitive ratio of at least 2
(proof on the board)
- Remark: Proof of the theorem shows that any on-line
algorithm which has a constant competitive ratio needs a
'waiting' strategy
Problem 1\(|r_j| \sum C_j \) - algorithm

Algorithm delayed SPT (DSPT):

1. IF machine gets idle THEN
2. calculate next time \(t \) at which a job is available;
3. let \(j \) be unscheduled available job with smallest processing time
 (if choice, select job with smallest release date);
4. IF \(p_j \leq t \) THEN
 5. schedule job \(j \) at \(t \)
6. ELSE
7. wait until \(t = p_j \) or until a next job becomes available;
Problem 1\(|r_j| \sum C_j \) - algorithm (cont.)

- **Remarks on DSPT:**
 - The algorithm would like to order jobs by increasing processing times, but does not know if in the future smaller jobs arrive and how long to wait.
 - To cope with this, the algorithm waits so long that if it makes a 'mistake' and schedules a large job \(j \), all smaller jobs coming after \(j \) have a release date \(\geq p_j \).
 - This makes that the 'mistake' can not contribute too much to the criterion.
Theorem: Algorithm DSPT for problem 1\(|r_j| \sum C_j\) has competitive ratio 2

Proof (sketch):
- Notation:
 - I: instance with a minimal number of jobs for which DSPT has largest performance ratio
 - σ: schedule created by algorithm DSPT for instance I
- Observation: Schedule σ consist of a single block (i.e. all jobs are processed without idle time in between)
- Assumption: jobs are numbered according to their position in σ
Problem 1 | r_j | \Sigma C_j - algorithm (cont.)

- Proof (cont.):
 - partition of \sigma into subblocks B_1, \ldots, B_k:
 - within B_i jobs are ordered according to increasing processing times
 - last job of B_i is larger than first job of B_{i+1}
 - B_i consist of jobs b(i - 1) + 1, \ldots, b(i)
 (i.e. \(b(i) = \min\{j > b(i - 1)| p_j > p_{j+1}\} \))
 - define \(m(i) \) such that \(p_{m(i)} = \max_{0 \leq j \leq b(i)} p_j \)
 - define pseudo schedule \(\psi \) by scheduling jobs in same order as in \sigma where job j from subblock B_{i+1} starts at \(S_j(\sigma) - p_{m(i)} \)
Problem 1\(|r_j|\sum C_j - \text{algorithm (cont.)}

Proof (cont.):

- in \(\psi\) job may overlap or start before their release date
- Notation:
 - \(\phi\): optimal preemptive schedule for \(I\)

- Lemma 1: For all \(j \in I\) we have: \(C_j(\sigma) - C_j(\psi) \leq C_j(\phi)\).
 (Proof on the board)

- Lemma 2: \(\sum C_j(\psi) \leq \sum C_j(\phi)\)
 (Proof in the handouts)
Problem 1\(|r_j| \sum C_j \) - randomized algorithm

- algorithm is based on optimal preemptive solution of problem 1\(|r_j, pmtn| \sum C_j \)
- SRPT (at each point in time schedule an available job with shortest remaining processing time) solves problem 1\(|r_j, pmtn| \sum C_j \)
- SRPT is an on-line algorithm and, thus, an on-line algorithm for problem 1\(|r_j| \sum C_j \) may use the result of SRPT
Problem 1 $|r_j| \sum C_j$ - randomized algorithm

- **algorithm α-scheduler:**

1. L: list of jobs for which in the optimal preemptive schedule an α fraction has already been scheduled at the current time; initially: $L = \emptyset$;
2. proceed in time whereby the preemptive schedule is updated
3. IF α fraction of job j is finished in preemptive schedule THEN
4. add j at the end of L;
5. IF machine gets idle THEN
6. schedule first job of L or if L is empty, proceed in time;
Problem 1\(| r_j \mid \sum C_j\) - randomized algorithm

- for fixed \(\alpha \) the \(\alpha \)-scheduler is a deterministic algorithm
- for \(\alpha = 1 \), the \(\alpha \)-scheduler has a competitive ratio of 2 (proof by Phillips, Stein and Wein [1995])
- other values of \(\alpha \) lead to larger competitive ratios
- Theorem: The randomized on-line algorithm \(\alpha \)-scheduler, where \(\alpha \) is chosen according to probability density function \(f(\alpha) = e^\alpha/(e - 1) \), has competitive ratio \(e/(e - 1) \approx 1.582 \) (proof by Chekuri, Motwani, Natarajan and Stein [1997])
- Theorem: Any randomized on-line algorithm for problem 1\(| r_j \mid \sum C_j\) has a competitive ratio of at least \(e/(e - 1) \)