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On-Line Scheduling

General Introduction

on-line scheduling can be seen as scheduling with incomplete
information

at certain points, decisions have to be made without knowing
the complete instance

depending on the way how new information becomes known,
different on-line paradigms are possible



On-Line Scheduling

On-Line paradigms

scheduling jobs one by one

in this paradigm jobs are ordered in some list (sequence)
jobs are presented one by one to the decision maker
the moment the job is presented, its characteristics get
available
the scheduling decision for the job has to be taken before the
next job is presented
the scheduling decision is irreversible

Remarks:

scheduling jobs one by one is list scheduling!

in Lecture 5, we have shown that list scheduling is a
2 − 1/m-approximation for P ||Cmax
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On-Line paradigms (cont.)

jobs arrive over time

jobs become known at their release date
the scheduling decision for a job may be delayed
at any time all currently available jobs are at the disposal of
the decision maker
decisions of the past are irreversible

Remark:

we consider this paradigm
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Performance measure

quality of an on-line algorithm is mostly measured by
evaluating its worst case performance

as reference value the best off-line value is used

has a ’game theoretic’ character:

the on-line algorithm plays against an ’adversary’
the adversary makes a sequence of requests (jobs) to be served
by the on-line algorithm
the adversary also serves the request, but only after it knows
all requests
the adversary tries to get the costs of the on-line algorithm as
high as possible compared to its own cost



On-Line Scheduling

Performance measure - competitive analysis

an on-line algorithm is ρ-competitive if its objective value is no
more than ρ times the optimal off-line value for all instances

the competitive ratio is related to the approximation factor in
off-line settings



On-Line Scheduling

Performance measure - competitive analysis

an on-line algorithm is ρ-competitive if its objective value is no
more than ρ times the optimal off-line value for all instances

the competitive ratio is related to the approximation factor in
off-line settings

if randomization is allowed within the on-line algorithm (i.e.
random choices are allowed) the expected objective value is
used for the competitive analysis



On-Line Scheduling

Performance measure - lower bounds

how much does one lose by not having complete information
or how much is it worth to know the future?



On-Line Scheduling

Performance measure - lower bounds

how much does one lose by not having complete information
or how much is it worth to know the future?

the competitive ratio of a specific on-line algorithm is not the
answer to this problem

a lower bound on the competitive ratio of every possible
on-line algorithm answers the question!

such lower bounds can be achieved by providing a specific set
of instances on which no on-line algorithm can perform well
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Problem 1|rj |
∑

Cj

problem is NP-hard

if all release dates are equal, the SPT-rule solves the problem

in the general case, SPT (each time the machine gets idle,
process an available job with smallest processing time) is an
on-line algorithm

Theorem: For problem 1|rj |
∑

Cj the SPT-algorithm has not
a constant competitive ratio.
(proof on board)

Can we do better?

How good can we do?
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Problem 1|rj |
∑

Cj - lower bound

Theorem: Any deterministic on-line algorithm for problem
1|rj |

∑
Cj has a competitive ratio of at least 2

(proof on the board)

Remark: Proof of the theorem shows that any on-line
algorithm which has a constant competitive ratio needs a
’waiting’ strategy
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Problem 1|rj |
∑

Cj - algorithm

Algorithm delayed SPT (DSPT):
1 IF machine gets idle THEN
2 calculate next time t at which a job is available;
3

let j be unscheduled available job with smallest processing time;
4 (if choice, select job with smallest release date);
5 IF pj ≤ t THEN
6 schedule job j at t
7 ELSE
8

wait until t = pj or until a next job becomes available;
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Problem 1|rj |
∑

Cj - algorithm (cont.)

Remarks on DSPT:

algorithm would like to order jobs by increasing processing
times, but does not know if in the future smaller jobs arrive
and how long to wait
to cope with this, the algorithm waits so long that if it makes
a ’mistake’ and schedules a large job j , all smaller jobs coming
after j have a release date ≥ pj

this makes that the ’mistake’ can not contribute too much to
the criterion
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Problem 1|rj |
∑

Cj - algorithm (cont.)

Theorem: Algorithm DSPT for problem 1|rj |
∑

Cj has
competitive ratio 2

Proof (sketch):
Notation:

I : instance with a minimal number of jobs for which DSPT
has largest performance ratio
σ: schedule created by algorithm DSPT for instance I

Observation: Schedule σ consist of a single block (i.e. all jobs
are processed without idle time in between)
Assumption: jobs are numbered according to their position in σ
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Problem 1|rj |
∑

Cj - algorithm (cont.)

Proof (cont.):
partition of σ into subblocks B1, . . . ,Bk :

within Bi jobs are ordered according to increasing processing
times
last job of Bi is larger than first job of Bi+1

Bi consist of jobs b(i − 1) + 1, . . . , b(i)
(i.e. b(i) = min{j > b(i − 1)|pj > pj+1})

define m(i) such that pm(i) = max0≤j≤b(i) pj

define pseudo schedule ψ by scheduling jobs in same order as
in σ where job j from subblock Bi+1 starts at Sj (σ) − pm(i)
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Problem 1|rj |
∑

Cj - algorithm (cont.)

Proof (cont.):

in ψ job may overlap or start before their release date
Notation:

φ: optimal preemptive schedule for I

Lemma 1: For all j ∈ I we have: Cj (σ) − Cj (ψ) ≤ Cj (φ).
(Proof on the board)
Lemma 2:

∑
Cj (ψ) ≤

∑
Cj (φ)

(Proof in the handouts)
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Problem 1|rj |
∑

Cj - randomized algorithm

algorithm is based on optimal preemptive solution of problem
1|rj , pmtn|

∑
Cj

SRPT (at each point in time schedule an available job with
shortest remaining processing time) solves problem
1|rj , pmtn|

∑
Cj

SRPT is an on-line algorithm and, thus, an on-line algorithm
for problem 1|rj |

∑
Cj may use the result of SRPT
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Problem 1|rj |
∑

Cj - randomized algorithm

algorithm α-scheduler:
1 L: list of jobs for which in the optimal preemptive schedule an
α fraction has already been scheduled at the current time;
initially: L = ∅;

2 proceed in time whereby the preemptive schedule is updated
3 IF α fraction of job j is finished in preemptive schedule THEN
4 add j at the end of L;
5 IF machine gets idle THEN
6

schedule first job of L or if L is empty, proceed in time;
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Problem 1|rj |
∑

Cj - randomized algorithm

for fixed α the α-scheduler is a deterministic algorithm

for α = 1, the α-scheduler has a competitive ratio of 2
(proof by Phillips,Stein and Wein [1995])

other values of α lead to larger competitive ratios

Theorem: The randomized on-line algorithm α-scheduler,
where α is chosen according to probability density function
f (α) = eα/(e − 1), has competitive ratio e/(e − 1) ≈ 1.582
(proof by Chekuri, Motwani, Natarajan and Stein [1997])

Theorem: Any randomized on-line algorithm for problem
1|rj |

∑
Cj has a competitive ratio of at least e/(e − 1)


