
Metaheuristics in Scheduling

Local Search and Genetic Algorithms

Tim Nieberg



Metaheuristics in Scheduling

NP-hard scheduling problem → Brand-and-Bound?

... usually only valid for small instances!

NP-hard scheduling problem → Approximation?

... does not work in general!

NP-hard scheduling problem → Heuristic?

... is there a general approach to design a non-trivial heuristic?

We discuss two general techniques for solving optimization
problems heuristically.



Local Search Algorithms

Recap: Discrete Optimization Problem (Minimization)
A (Discrete) Optimization Problem is given by its problem
description Π = (I,S), where

I is the set of instances, and

S(x) is the (discrete) set of feasible solutions for an instance
x ∈ I,

together with an objective function f : S(x) → R that evaluates
each feasible solution.
We then seek–given an instance x–a feasible solution y ∈ S(x)
with minimum objective function value.



Basic Structure of Local Search

Suppose we are given an instance x ∈ I.

S = S(x) is a discrete set

Local Search is an iterative procedure that moves from one
solution in S to the next (until some stopping criterion is satisfied).

... think of it as the discrete analogy of hill-climbing



Neighborhoods on the Solution Space

In order to move systematically through the solution set, the
possible moves from one solution to another is restricted by

neighborhood structures N : S → 2S .

For each solution s ∈ S, the set N (s) describes the subset of
solutions which can be reached from s in the next step.

N (s) is called neighborhood of s



Neighborhood Graph

A neighborhood structure N may be represented by a directed
graph G = (V ,A) where

V = S

(u, v) ∈ A ⇐⇒ v ∈ N (u).

This graph is called the neighborhood graph.

Note: in general, it is not possible to store this graph completely!

S usually has exponential size w.r.t. the instance.



Allowed Modifications

In order to avoid problems with size of the neighborhood graph, a
neighorhood is usually described by operators:

Let F : S → S be a function,

for each feasible s ∈ S, F (s) is a subset consisting only of
feasible solutions, we call F thus an allowed modification.

For every s ∈ S, we can define a neighborhood structure for a set
AM of allowed modifications as follows

N (s) := {F (s) | F ∈ AM}.



Connectivity of the Neighborhood Graph

Suppose the neighborhood graph G = (V ,A) is connected

⇒ for every (starting) solution s ∈ S, there exists a directed
path to every other solution in S.

In particular, we can provide a sequence of operations to s
that result in an optimal solution s∗ ∈ S.



Connectivity of the Neighborhood Graph

Suppose the neighborhood graph G = (V ,A) is connected

⇒ for every (starting) solution s ∈ S, there exists a directed
path to every other solution in S.

In particular, we can provide a sequence of operations to s
that result in an optimal solution s∗ ∈ S.

Well, this is usually overkill!



Connectivity of the Neighborhood Graph

Suppose the neighborhood graph G = (V ,A) is connected

⇒ for every (starting) solution s ∈ S, there exists a directed
path to every other solution in S.

In particular, we can provide a sequence of operations to s
that result in an optimal solution s∗ ∈ S.

Well, this is usually overkill!
We only need the latter condition:

A neighborhood N is called OPT-connected if, from each
solution s ∈ S, an optimal solution can be reached by a finite
sequence s, s1, . . . , sk , sk+1 of solutions si ∈ S s.t.
si+1 ∈ N (si) for i = 1, . . . , k , and sk+1 optimal.



Example: Exchange Neighborhood

Recall: many (active) schedule are completely described by
permutations.
Swap Neighborhood for a permutation π:

Swap two adjacent elements in π.

Exchange Neighborhood for a permutation π:

New permutation π′ with

π
′(a) := π(b) ∧ π

′(b) := π(a)

for two indexes a and b.

(In order to obtain an allowed modification, we need to restrict all
permutations to feasiblity, this is problem specific!)



Local Search Method

Given a solution s ∈ S,

in each iteration, we choose a solution s ′ ∈ N (s) (or the
allowed modification that yields s ′), and

based on the objective function values f (s) and f (s ′), we
choose a starting solution for the next iteration.

According to different criteria for the choice of the next solution,
different types of local search methods emerge.

N OPT-connected ⇒ independent of starting solution, we are able
to reach optimality.
N not OPT-connected ⇒ may happen that we are unable to even
reach an optimal solution at all.



Iterative Improvement

For a local search approach, the simplest choice is to always take a
neighboring solution with smallest objective value.
Algo.: Iterative Improvement

1 Generate initial solution s ∈ S
2 WHILE ∃s ′ ∈ N (s) | f (s ′) < f (s) DO

1 Choose best solution s ′ ∈ N (s);
2 s := s ′;



Iterative Improvement

For a local search approach, the simplest choice is to always take a
neighboring solution with smallest objective value.
Algo.: Iterative Improvement

1 Generate initial solution s ∈ S
2 WHILE ∃s” ∈ N (s) | f (s ′) < f (s) DO

1 Choose best solution s ′ ∈ N (s);
2 s := s ′;

... terminates with local minimum s∗ w.r.t. neighborhood N

... we could start the algorithm several times with different
solutions

... we could also accept solutions with increasing objective
value

need strategies to avoid cycling!



Simulated Annealing

Idea: avoid cycling by randomization, i.e. simulate the annealing
process from physics

choose a solution s ′ ∈ S randomly

accept solution only with a certain probability

In the i -th iteration, s ′ is accepted with probablity

min{1, e
f (s′)−f (s)

ti }

where (ti ) is a sequence of positive control values with

lim
i→∞

ti = 0.



Simulated Annealing

Algo.: Simulated Annealing

1 i := 0

2 Generate initial solution s ∈ S

3 best := f (s)
4 REPEAT

1 Generate randomly a solution s ′ ∈ N (s)

2 IF Rand(0,1) < min{1, e
f (s′)−f (s)

ti } THEN

1 s := s
′

2 IF f (s ′) < best THEN
3 s

∗ := s

4 best := f (s ′)

5 i := i + 1

6 UNTIL some stopping condition is satisfied



Threshold Acceptance

often, (ti ) is defined (in analogy to physics) as

ti+1 := αti , 0 < α < 1

search may be stopped after number of iterations, certain
number of non-improving solutions, time limit, ...

Other variant of S.A. is given by Threshold Acceptance, where

acceptance rule for s ′ ∈ N is accepted if difference
f (s) − f (s ′) is within some limit li

li also decreases with number of iterations



Tabu Search

Another deterministic strategy to avoid cycling is to store all
visited solutions in a so-called tabu-list T .

⇒ a neighbor is only accepted if it is not contained in T



Tabu Search

Algo.: Tabu Search

1 Generate initial solution s ∈ S

2 best := f (s); s∗ := s

3 T := ∅

4 REPEAT
1 Cand(s) := {s ′ ∈ N (s) | move from s to s ′ is not tabu }
2 Choose a solution s ′ ∈ Cand(s)
3 Update T
4 s := s ′

5 IF f (s ′) < best THEN
6 s∗ := s
7 best := f (s ′)

5 UNTIL some stopping condition is satisfied



Tabu Search

Another deterministic strategy to avoid cycling is to store all
visited solutions in a so-called tabu-list T .

⇒ a neighbor is only accepted if it is not contained in T

... due to memory constraints, this may not be possible!

T may contain only the |T | ≤ B visited solutions

only cycles of length greater than B may occur
if B sufficiently large, the probability of cycling becomes small

T may not contain complete solution descriptions, but only
attributes of already visited solutions

all solutions having one of the stored attributes are tabu
solution will not be re-visited as long as its attributes are
stored in T

Disadvantage: also new solutions may be declared tabu!

aspiration criteria: accept solution even if they are tabu
e.g. based on objective function value



Tabu Search

Algo.: Tabu Search

1 Generate initial solution s ∈ S

2 best := f (s); s∗ := s

3 T := ∅

4 REPEAT
1 Cand(s) := {s ′ ∈ N (s) | move from s to s ′ is not tabu OR s ′

satisfies the aspiration criterion }
2 Choose a solution s ′ ∈ Cand(s)
3 Update T
4 s := s ′

5 IF f (s ′) < best THEN
6 s∗ := s
7 best := f (s ′)

5 UNTIL some stopping condition is satisfied



Neighbor Selection

Depending on the size of the neighborhood, several selection
strategies for Cand(s) emerge:

best-fit: explore entire neighborhood and take best neighbor

first-fit: explore neighborhood and take first neighbor that
improves current solution

if no such neighbor exists, take the best one from Cand(s)

...



Tabu List Management

For tabu-list management, two types are distinguished.
static tabu-lists

constant size

dynamic tabu-lists

variable length

if a solution is found that improves the current leader, the list
is emptied as we have never visited this part of the solution
space before

improving phase of T.S.: decrease length of list

non-improving phase: increase length of list

Generally speaking, a tabu-list serves a short-term memory of the
local search procedure.



Diversification

Besides short-term memory (T.L.), also long-term memory may be
kept that is used for diversification.
Here, properties of promising solutions not explored further are
stored which are then used in a restarting phase:

If within a certain number of iterations, the current leader is
not improved (intensification), then

the search process is stopped and restarted with a new
solution (diversification).

Note: a restart from a randomly generated solution would neglect
all information of the previous search process.



Application of Local Search

Arriving at a local search algorithm for a specific problem:

Define problem specific ingredients of local search:

most importantly: the neighborhood

Tune the chosen local search approach.

Claim:
The problem specific ingredients are far more important than the
tuning.



Efficiency of Local Search

Local efficiency (one iteration):

quality of s ′ or N (s)

computational time to calculate and evaluate s ′

size of N (s)

Note: large size of neighborhood needs not result in large
computational time (see c.f. research on VLSN: efficient search for
optimal solution w.r.t. neighborhood)

Global efficiency:

number of iterations, computational time

quality of final solution

related to price of anarchy (game theory)



Applying Tabu Search to the Job Shop Problem

Recap: Jop-Shop Problem J||Cmax

n jobs j = 1, . . . , n consisting of nj operations

m machines

each operation Oij has machine µij and processing time pij

Recap: Disjunctive Graph Model and Complete Selections

complete selection → all arcs in model fixed

cycle-free ⇐⇒ feasible solution

... can use permutation of operations per machine to describe
complete selection uniquely

... can use longest path calculation to determine starting time
of each operation (critical path)

Use π = (π1, . . . , πm) to describe the set S of solutions.



TS-JS: Neighborhood Structures

Apply the Swap-Neighborhood approach based on the following
lemma.
Lemma: Let s be a complete selection, and let P be a longest path
in G (s).
Let (v ,w) be an arc of P such that v and w are processed on the
same machine. Then, s ′ obtained by reversing v and w is again a
complete selection.
(Proof on the board)

We call the resulting neighborhood N1.



TS-JS: Neighborhood Structures

Apply the Swap-Neighborhood approach based on the following
lemma.
Lemma: Let s be a complete selection, and let P be a longest path
in G (s).
Let (v ,w) be an arc of P such that v and w are processed on the
same machine. Then, s ′ obtained by reversing v and w is again a
complete selection. (⇒ N1)
Theorem: N1 is OPT-connected.
(Proof on the board)



Machine-Blocks

Consider a feasible solution, i.e. complete selection, s = π.

Definition (Block): Let G (s) = (V ,C ∪ D) bet the graph induced
by the complete selection s, and let P be a critical path in G (s).
A sequence u1, . . . , uk of successive nodes in P is called block if
the following two properties hold:

(i) The sequence contains at least two nodes.

(ii) The sequence represents a maximal number of operations
to be processed on the same machine.

We denote the j-th block on a given critical path P by Bj .



Machine-Blocks

Lemma: Let s be a complete selection corresponding to a feasible
solution for the job-shop problem. If there exists another selection
s ′ such that L(s ′) < L(s) holds, then in s ′ at least one operation
from some block B of G (s) has to be processed before the first or
after the last operation of B .
(Proof on the board.)



Machine-Blocks

Lemma: Let s be a complete selection corresponding to a feasible
solution for the job-shop problem. If there exists another selection
s ′ such that L(s ′) < L(s) holds, then in s ′ at least one operation
from some block B of G (s) has to be processed before the first or
after the last operation of B .

Consequence: s, s ′ with L(s ′) < L(s), then one of the following
holds

at least one operation of one block B in G (s), different from
the first operation in B , has to be processed before all other
operations of B in the schedule given by G (s ′)

at least one operation of one block B in G (s), different from
the last operation in B , has to be processed after all other
operations of B in the schedule given by G (s ′)



N2

Consider (u, v) on critical path w.r.t. s.
Disadvantage of N1:

If (u, v) belong to a block, but do not contain first or last
operation of this block, no improvement occurs.

⇒ generally, several moves are needed to improve solution

Let (v ,w) be processed on the same machine, and denote by
PM(v)(SM(w)) the immediate predecessor (successor) of v(w) (if
exists).
Consider as moves all permutations of {PM(v), v ,w} and
{v ,w ,SM(w)} where (v ,w) is reversed and that are feasible (N2).
Clearly, N1 ⊆ N2 ⇒ N2 is OPT-connected



N3

Directly using the block-lemma, we obtain:
N3 is defined as the neighborhood, where operations of a block are
shifted at the beginning or the end of the respective block.
open question: Is N3 OPT-connected?



N4

N3 can be extended to a neighborhood N4 wich is OPT-connected
in the following way:

Let P be a critical path in G (s).

s ′ is derived from s by moving one operation j of a block B of
P different from the first (last) operation in B before (after)
all operations of B (if feasible).

Otherwise (i.e. above not feasible), j is moved to the position
inside B closest to first (last) operation, that is still feasible.

Note: N3 ⊆ N4

Lemma: N4 is OPT-connected
(proof on the board)



Organization of the Tabu-List

N1 up to N4 work by reversing an arc (v ,w) in G (s):

attribute = arc reversed by recent moves

a solution is defined to be tabu if an arc belonging to the
attribute set is contained in it

As supporting data-structure, we use a matrix A = (aij):

aij = count of the iteration in which arc (i , j) was last reversed

we forbid a swap of (i , j) if the count + length of the tabu-list
is greater than the current iteration

⇒ the tabu-list length can be arbitrarily chosen
(memory does not increase with length)
On A, we use a dynamic tabu-list management:

improving phase: decrease length of list

non-improving phase: increase length of list

also include an aspiration criterion, e.g. based on a lower bound



Genetic Algorithms

Genetic Algorithm

general search technique inspired by biological evolution

’ survival of the fittest ’

work on a set POP of solutions (population)

instead of single solution as in local search

single solution s ∈ POP is called chromosome

usually encoded by a sequence of symbols (DNA)

for each feasible solution s, fit(s) is a measure of adaption
(fitness value)

fit(s) is often related to the objective function f (s)



Genetic Algorithm

Starting from an initial population, ’parent’ solutions are selected
and new ’child’ solutions are created by genetic operators:

corssover

mix subsequences of parent chromosomes

mutation

pertubate a chromosome

Size of the population is controlled by fitness value.



Genetic Algorithm

Algo.: Genetic Algorithm

1 Generate initial population POP

2 Compute fitness of each individual s ∈ POP
3 REPEAT

1 Choose two parent solutions sM , sF ∈ POP
2 Create a child solution sC from sM , sF by crossover
3 Mutate sC with certain probability
4 Compute fitness of sC

5 Add sC to POP and reduce POP by selection

4 UNTIL some stopping criterion is satisfied



Genetic Algorithm

Different variations are also possible

several children may be generated simultaneously

population may be divided into two sets

matching and creation of two new children → new population

mutations may be realized by local search

In this approach, also infeasible solutions (chromosomes) may be
present, this can be encoded in the fitness value.


