Scheduling
Parallel Machine Scheduling

Tim Nieberg



Parallel machine models: Makespan Minimization

Problem P||Cpax:

@ m machines

@ n jobs with processing times pi, ..., pn



Parallel machine models: Makespan Minimization

Problem P||Cpax:

@ m machines

@ n jobs with processing times pi, ..., pn

@ variable xj; =
0 else

@ |LP formulation:

min Cinax

A
5
g

|
\'I—‘

Smox o= 1 j=1,...

1 if job j is processed on machine i



Parallel machine models: Makespan Minimization

Problem P||Cpax:

@ in lecture 2: P2||Cpnax is NP-hard

® P||Cpax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

@ question: What happens if x;; € {0,1} in the ILP is relaxed?




Parallel machine models: Makespan Minimization

Problem P||Cpax:
@ in lecture 2: P2||Cpnax is NP-hard

® P||Cpmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

@ question: What happens if x;; € {0,1} in the ILP is relaxed?

answer: objective value of LP gets ZJ'-’ZI pj/m

@ question: is this the optimal value of P|pmtn|Cpax?




Parallel machine models: Makespan Minimization

Problem P||Cpay:
@ in lecture 2: P2||Cpnax is NP-hard

® P||Cpmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

@ question: What happens if x;; € {0,1} in the ILP is relaxed?

answer: objective value of LP gets Zj:l pj/m

@ question: is this the optimal value of P|pmtn|Cp,ax?
answer: No!
Example: m=2,n=2,p=(1,2)




Parallel machine models: Makespan Minimization

Problem P||Cpax:

in lecture 2: P2||Cpax is NP-hard

P||Cmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

question: What happens if x;; € {0,1} in the ILP is relaxed?

answer: objective value of LP gets Z}’Zl pj/m

question: is this the optimal value of P|pmtn|Cax?
answer: No!

Example: m=2,n=2,p=(1,2)

add Cpax > pj for j =1,...,m to ensure that each job has
enough time



Parallel machine models: Makespan Minimization

LP for problem Plpmtn|Cay:

min Crnax
n
s.t. ZX,'J'pJ' < Chax
Jj=1
Pj < Crax
m
Yoxij =1
i=1
> 0

Xij

i=1,.
Jj=1
Jj=1
i=1,.



Parallel machine models: Makespan Minimization

LP for problem P|pmtn|Cpay:

min Crnax

IN
5
!
I
\’I—‘
3

n

s.t. > Xjipj
j=1

pi < Cinax J=1,...,n

m
Yoxip =1 j=1,...,n
i=1

omj=1....n

%

o
Il
—_

Xij

o Optimal value of LP is max{max/_, pj, Zf:l pj/m}
@ LP gives no schedule, thus only a lower bound!

@ construction of schedule: simple (page -4-) or via open shop
(later)



Parallel machine models: Makespan Minimization

Wrap around rule for problem P|lpmtn|Cpay:

define opt := max{max]_, p;, >>7_; pj/m}
opt is a lower bound on the optimal value for problem
P|pmtn|Cpmax

Construction of a schedule with C,,,x = opt:

fill the machines successively, schedule the jobs in any order
and preempt a job if the time bound opt is met

all jobs can be scheduled since opt > ZJ’-’ZI pj/m

no job is scheduled at the same time on two machines since
opt > ma><J’-’:1 pj



Parallel machine models: Makespan Minimization

Wrap around rule for problem P|lpmtn|Cax:

@ Construction of a schedule with C,.x = opt:
fill the machines successively, schedule the jobs in any order
and preempt a job if the time bound opt is met

@ all jobs can be scheduled since opt > 21’7:1 pj/m

@ no job is scheduled at the same time on two machines since
opt > max;_; p;

@ Example: m=3,n=5p=(3,7,5,1,4)

M3 [3]4] 5 |

M2 2 | 3 |

M1 1 2 |
;



Parallel machine models: Makespan Minimization

Schedule construction via Open shop for Plpmtn|Cpax:

@ given an optimal solution x of the LP, consider the following
open shop instance

8 n jobs, m machines and pj; := x;;p;

@ solve for this instance O|pmtn|Cpnax



Parallel machine models: Makespan Minimization

Schedule construction via Open shop for P|pmtn|Cpay:

@ given an optimal solution x of the LP, consider the open shop
instance n jobs, m machines and pj;; := X;ip;

@ solve for this instance O|pmtn|Cpax
@ Result: solution for problem P|pmtn|C,ax

o for O|pmtn|Cpax we show later that an optimal solution has
value

m n
n m
max{max > pijmax > py}
i=1 j=1

and can be calculated in polynomial time

@ Result: solution of O|pmtn|Cp,.x is optimal for P|pmtn|Cmnax



Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cppay:

@ m machines with speeds s1,...,5m
@ n jobs with processing times ps1,...,pn
@ change LP!



Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cpay:

@ m machines with speeds s1,...,5m
@ n jobs with processing times p1, ..., pn
min Crnax
n
s.t. Z X,'jpj/S,' < Chax i=1, , m
—
Jn
ZXUPJ‘/SI < GCrax Jj=1 , N
i=1
1 m .
Yoxj =1 j=1,...,n
i=1
Xij > 0 r=1...,mj=1, N



Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cpay (cont.):

@ since again no schedule is given, LP leads to lower bound for
optimal value of Q|pmtn|Cp,ax,

@ as for P|pmtn|Cpax we may solve an open shop instance
corresponding to the optimal solution x of the LP with n jobs,
m machines and pjj 1= x;ip;/si

@ this solution is an optimal schedule for Q|pmtn|Cpax



Parallel machine models: Makespan Minimization

Unrelated machines: R|pmtn|C.y:

@ m machines

@ n jobs with processing times p1, ..., pn
@ speed s

@ change LP!



Parallel machine models: Makespan Minimization

Unrelated machines: R|pmtn|Cay:

@ m machines

@ n jobs with processing times p1,..., p, and given speeds s;;
min Crnax
n
s.it. Yo xipi/si < Cmax =1,...,m
—
Jn
Z Xijpj/sij < Cmax J = 17 , N
—
) m .
Yoxij = 1 j=1,....n
i=1
xj > 0 i=1....mj=1...,n



Parallel machine models: Makespan Minimization

Unrelated machines: R|pmtn|C., (cont.):

@ same procedure as for Q|pmtn|Cpax!

@ again no schedule is given,

o LP leads to lower bound for optimal value of R|pmtn|Cpax,

o for optimal solution x solve an corresponding open shop
instance with n jobs, m machines and p;; := x;p;/sjj

@ this solution is an optimal schedule for R|pmtn|C,ax



Parallel machine models: Makespan Minimization

Approximation methods for: P||Cpax:

@ list scheduling methods (based on priority rules)
@ jobs are ordered in some sequence 7

@ always when a machine gets free, the next unscheduled job in
7 is assigned to that machine

@ Theorem: List scheduling is a (2 — 1/m)-approximation for
problem P||Cpax for any given sequence 7

@ Proof on the board

@ Holds also for P|rj|Crax



Parallel machine models: Makespan Minimization

Approximation methods for: P||Cpayx (cont.):

@ consider special list

@ LPT-rule (longest processing time first) is a natural candidate
@ Theorem: The LPT-rule leads to a
(4/3 — 1/3m)-approximation for problem P||Cpax
o Proof on the board uses following result:
@ Lemma: If an optimal schedule for problem P||Cpax results in
at most 2 jobs on any machine, then the LPT-rule is optimal
@ Proof as Exercise

@ the bound (4/3 — 1/3m) is tight (Exercise)



Parallel machine models: Total Completion Time

Parallel machines: P||Y" C;:

@ for m =1, the SPT-rule is optimal (see Lecture 2)
@ for m > 2 a partition of the jobs is needed

@ if a job j is scheduled as k-last job on a machine, this job
contributes kp; to the objective value



Parallel machine models: Total Completion Time

Parallel machines: P||Y" C;:

@ for m =1, the SPT-rule is optimal (see Lecture 2)

)

for m > 2 a partition of the jobs is needed

if a job j is scheduled as k-last job on a machine, this job
contributes kp; to the objective value

we have m last positions where the processing time is
weighted by 1, m second last positions where the processing
time is weighted by 2, etc.

use the n smallest weights for positioning the jobs



Parallel machine models: Total Completion Time

Parallel machines: P||Y" C;:

e for m =1, the SPT-rule is optimal (see Lecture 2)

(]

for m > 2 a partition of the jobs is needed

o if a job j is scheduled as k-last job on a machine, this job
contributes kp; to the objective value

@ we have m last positions where the processing time is
weighted by 1, m second last positions where the processing
time is weighted by 2, etc.

@ use the n smallest weights for positioning the jobs

@ assign job with the ith largest processing time to ith smallest
weight is optimal
@ Result: SPT is also optimal for P|| " C;



Parallel machine models: Total Completion Time

Uniform machines: Q|| > C;:

@ if a job j is scheduled as k-last job on a machine M,, this job
contributes kpj/s, = (k/s;)pj to the objective value;
i.e. job j gets 'weight' (k/s,)

@ for scheduling the n jobs on the m machines, we have weights

1 1 2 2 n n

g e ey ) g0y g0y g0y —

S1 Sm S1 Sm S1 Sm

@ from these nm weights we select the n smallest weights and
assign the ith largest job to the jth smallest weight leading to

an optimal schedule



Parallel machine models: Total Completion Time

Example uniform machines: Q|| > G;:
°on=6, p=(6,9,8124,2)
e m=3,s=(31,4)
@ possible weights:




Parallel machine models: Total Completion Time

Example uniform machines: Q|| > G;:
o n=6, p=(6,9,8,124,2)
e m=3,s=(31,4)

@ 6 smallest weights:

@ jobs sorted by decreasing processing times: (4,2,3,1,5,6)



Parallel machine models: Total Completion Time

Example uniform machines: Q|| > G;:
°on=6, p=(6,9,8124,2)
e m=3, s=(3,1,4)
@ sorted list of weights:

{1 1223 4}
4°374°3747 4
@ jobs sorted by decreasing processing times: (4,2,3,1,5,6)
@ Schedule:
M3 [6] 5 [ 3 ] 4 |
M2
Ml 2 ‘
0 5



Parallel machine models: Total Completion Time

Unrelated machines: R||>" C;:

@ if a job j is scheduled as k-last job on a machine M,, this job
contributes kpj/s,j to the objective value;

@ since now the 'weight’ is also job-dependent, we cannot
simply sort the 'weights'
@ assignment problem:
@ n jobs
@ nm machine positions (k, r) (k-last position on M,)
@ assigning job j to (k, r) has costs kp;/s,;
¢ find an assignment of minimal costs of all jobs to machine
positions

@ leads to optimal solution of R|| > C; in polynomial time



Parallel machine models: Total Weighted Completion Time

Parallel machines: P[] Y w;C;:

@ Problem 1|| Y w;C; is solvable via the WSPT-rule (Lecture 2)
@ Problem P2|| > w;Cjis ...




Parallel machine models: Total Weighted Completion Time

Parallel machines: P||>" w;C;:
@ Problem 1|| Y w;(; is solvable via the WSPT-rule (Lecture 2)
@ Problem P2||3" w;(; is already NP-hard, but
@ Problem P2||3" w;C; is pseudopolynomial solvable

@ Problem P|| > w;C; is NP-hard in the strong sense
Proof by reduction using 3-PARTITION as exercise

@ Approximation:




Parallel machine models: Total Weighted Completion Time

Parallel machines: P||>" w;C;:

e © ¢ ¢

Problem 1| >~ w; C; is solvable via the WSPT-rule (Lecture 2)
Problem P2|| > w;(; is already NP-hard, but
Problem P2|| > w;C; is pseudopolynomial solvable

Problem P|| ) w;C; is NP-hard in the strong sense

Proof by reduction using 3-PARTITION as exercise

Approximation: the WSPT-rule gives an 3(1 + /2)

approximation
Proof is not given; uses fact that worst case examples have
equal w;/pj ratios for all jobs



