
Scheduling

Parallel Machine Scheduling

Tim Nieberg

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

m machines

n jobs with processing times p1, . . . , pn

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

m machines

n jobs with processing times p1, . . . , pn

variable xij =

{

1 if job j is processed on machine i

0 else

ILP formulation:

min Cmax

s.t.
∑n

j=1
xijpj ≤ Cmax i = 1, . . . ,m

∑m
i=1

xij = 1 j = 1, . . . , n

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

in lecture 2: P2||Cmax is NP-hard

P ||Cmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

question: What happens if xij ∈ {0, 1} in the ILP is relaxed?

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

in lecture 2: P2||Cmax is NP-hard

P ||Cmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

question: What happens if xij ∈ {0, 1} in the ILP is relaxed?
answer: objective value of LP gets

∑n
j=1

pj/m

question: is this the optimal value of P |pmtn|Cmax?

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

in lecture 2: P2||Cmax is NP-hard

P ||Cmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

question: What happens if xij ∈ {0, 1} in the ILP is relaxed?
answer: objective value of LP gets

∑n
j=1

pj/m

question: is this the optimal value of P |pmtn|Cmax?
answer: No!
Example: m = 2, n = 2, p = (1, 2)

Parallel machine models: Makespan Minimization

Problem P ||Cmax :

in lecture 2: P2||Cmax is NP-hard

P ||Cmax is even NP-hard in the strong sense (reduction from
3-PARTITION); i.e. also pseudopolynomial algorithms are
unlikely

question: What happens if xij ∈ {0, 1} in the ILP is relaxed?
answer: objective value of LP gets

∑n
j=1

pj/m

question: is this the optimal value of P |pmtn|Cmax?
answer: No!
Example: m = 2, n = 2, p = (1, 2)

add Cmax ≥ pj for j = 1, . . . ,m to ensure that each job has
enough time

Parallel machine models: Makespan Minimization

LP for problem P |pmtn|Cmax :

min Cmax

s.t.
n
∑

j=1

xijpj ≤ Cmax i = 1, . . . ,m

pj ≤ Cmax j = 1, . . . , n

m
∑

i=1

xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n

Parallel machine models: Makespan Minimization

LP for problem P |pmtn|Cmax :

min Cmax

s.t.
n
∑

j=1

xijpj ≤ Cmax i = 1, . . . ,m

pj ≤ Cmax j = 1, . . . , n

m
∑

i=1

xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n

Optimal value of LP is max{maxn
j=1

pj ,
∑n

j=1
pj/m}

LP gives no schedule, thus only a lower bound!

construction of schedule: simple (page -4-) or via open shop
(later)

Parallel machine models: Makespan Minimization

Wrap around rule for problem P |pmtn|Cmax :

define opt := max{maxn
j=1

pj ,
∑n

j=1
pj/m}

opt is a lower bound on the optimal value for problem
P |pmtn|Cmax

Construction of a schedule with Cmax = opt:
fill the machines successively, schedule the jobs in any order
and preempt a job if the time bound opt is met

all jobs can be scheduled since opt ≥ ∑n
j=1

pj/m

no job is scheduled at the same time on two machines since
opt ≥ maxn

j=1
pj

Parallel machine models: Makespan Minimization

Wrap around rule for problem P |pmtn|Cmax :

Construction of a schedule with Cmax = opt:
fill the machines successively, schedule the jobs in any order
and preempt a job if the time bound opt is met

all jobs can be scheduled since opt ≥ ∑n
j=1

pj/m

no job is scheduled at the same time on two machines since
opt ≥ maxn

j=1
pj

Example: m = 3, n = 5, p = (3, 7, 5, 1, 4)

M1

M2

M3

1 2

2 3

3 4 5

7

Parallel machine models: Makespan Minimization

Schedule construction via Open shop for P |pmtn|Cmax :

given an optimal solution x of the LP, consider the following
open shop instance

n jobs, m machines and pij := xijpj

solve for this instance O|pmtn|Cmax

Parallel machine models: Makespan Minimization

Schedule construction via Open shop for P |pmtn|Cmax :

given an optimal solution x of the LP, consider the open shop
instance n jobs, m machines and pij := xijpj

solve for this instance O|pmtn|Cmax

Result: solution for problem P |pmtn|Cmax

for O|pmtn|Cmax we show later that an optimal solution has
value

max{ n
max
j=1

m
∑

i=1

pij ,
m

max
i=1

n
∑

j=1

pij}

and can be calculated in polynomial time

Result: solution of O|pmtn|Cmax is optimal for P |pmtn|Cmax

Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cmax :

m machines with speeds s1, . . . , sm

n jobs with processing times p1, . . . , pn

change LP!

Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cmax :

m machines with speeds s1, . . . , sm

n jobs with processing times p1, . . . , pn

min Cmax

s.t.
n
∑

j=1

xijpj/si ≤ Cmax i = 1, . . . ,m

n
∑

i=1

xijpj/si ≤ Cmax j = 1, . . . , n

m
∑

i=1

xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n

Parallel machine models: Makespan Minimization

Uniform machines: Q|pmtn|Cmax (cont.):

since again no schedule is given, LP leads to lower bound for
optimal value of Q|pmtn|Cmax ,

as for P |pmtn|Cmax we may solve an open shop instance
corresponding to the optimal solution x of the LP with n jobs,
m machines and pij := xijpj/si

this solution is an optimal schedule for Q|pmtn|Cmax

Parallel machine models: Makespan Minimization

Unrelated machines: R |pmtn|Cmax :

m machines

n jobs with processing times p1, . . . , pn

speed sij

change LP!

Parallel machine models: Makespan Minimization

Unrelated machines: R |pmtn|Cmax :

m machines

n jobs with processing times p1, . . . , pn and given speeds sij

min Cmax

s.t.
n
∑

j=1

xijpj/sij ≤ Cmax i = 1, . . . ,m

n
∑

i=1

xijpj/sij ≤ Cmax j = 1, . . . , n

m
∑

i=1

xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n

Parallel machine models: Makespan Minimization

Unrelated machines: R |pmtn|Cmax (cont.):

same procedure as for Q|pmtn|Cmax !

again no schedule is given,
LP leads to lower bound for optimal value of R |pmtn|Cmax ,
for optimal solution x solve an corresponding open shop
instance with n jobs, m machines and pij := xijpj/sij
this solution is an optimal schedule for R |pmtn|Cmax

Parallel machine models: Makespan Minimization

Approximation methods for: P ||Cmax :

list scheduling methods (based on priority rules)

jobs are ordered in some sequence π
always when a machine gets free, the next unscheduled job in
π is assigned to that machine

Theorem: List scheduling is a (2 − 1/m)-approximation for
problem P ||Cmax for any given sequence π

Proof on the board

Holds also for P |rj |Cmax

Parallel machine models: Makespan Minimization

Approximation methods for: P ||Cmax (cont.):

consider special list

LPT-rule (longest processing time first) is a natural candidate

Theorem: The LPT-rule leads to a
(4/3 − 1/3m)-approximation for problem P ||Cmax

Proof on the board uses following result:
Lemma: If an optimal schedule for problem P ||Cmax results in
at most 2 jobs on any machine, then the LPT-rule is optimal
Proof as Exercise

the bound (4/3 − 1/3m) is tight (Exercise)

Parallel machine models: Total Completion Time

Parallel machines: P ||
∑

Cj :

for m = 1, the SPT-rule is optimal (see Lecture 2)

for m ≥ 2 a partition of the jobs is needed

if a job j is scheduled as k-last job on a machine, this job
contributes kpj to the objective value

Parallel machine models: Total Completion Time

Parallel machines: P ||∑ Cj :

for m = 1, the SPT-rule is optimal (see Lecture 2)

for m ≥ 2 a partition of the jobs is needed

if a job j is scheduled as k-last job on a machine, this job
contributes kpj to the objective value

we have m last positions where the processing time is
weighted by 1, m second last positions where the processing
time is weighted by 2, etc.

use the n smallest weights for positioning the jobs

Parallel machine models: Total Completion Time

Parallel machines: P ||∑ Cj :

for m = 1, the SPT-rule is optimal (see Lecture 2)

for m ≥ 2 a partition of the jobs is needed

if a job j is scheduled as k-last job on a machine, this job
contributes kpj to the objective value

we have m last positions where the processing time is
weighted by 1, m second last positions where the processing
time is weighted by 2, etc.

use the n smallest weights for positioning the jobs

assign job with the ith largest processing time to ith smallest
weight is optimal

Result: SPT is also optimal for P ||
∑

Cj

Parallel machine models: Total Completion Time

Uniform machines: Q||∑Cj :

if a job j is scheduled as k-last job on a machine Mr , this job
contributes kpj/sr = (k/sr)pj to the objective value;
i.e. job j gets ’weight’ (k/sr)

for scheduling the n jobs on the m machines, we have weights

{ 1

s1
, . . . ,

1

sm
,

2

s1
, . . . ,

2

sm
, . . . ,

n

s1
, . . . ,

n

sm
}

from these nm weights we select the n smallest weights and
assign the ith largest job to the ith smallest weight leading to
an optimal schedule

Parallel machine models: Total Completion Time

Example uniform machines: Q||∑Cj :

n = 6, p = (6, 9, 8, 12, 4, 2)

m = 3, s = (3, 1, 4)

possible weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}

6 smallest weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}

Parallel machine models: Total Completion Time

Example uniform machines: Q||∑Cj :

n = 6, p = (6, 9, 8, 12, 4, 2)

m = 3, s = (3, 1, 4)

6 smallest weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}

sorted list of weights:

{1

4
,
1

3
,
2

4
,
2

3
,
3

4
,
4

4
}

jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)

Parallel machine models: Total Completion Time

Example uniform machines: Q||∑Cj :

n = 6, p = (6, 9, 8, 12, 4, 2)

m = 3, s = (3, 1, 4)

sorted list of weights:

{1

4
,
1

3
,
2

4
,
2

3
,
3

4
,
4

4
}

jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)

Schedule:

0 5

M2

6 5 3 4

1 2

M3

M1

Parallel machine models: Total Completion Time

Unrelated machines: R ||
∑

Cj :

if a job j is scheduled as k-last job on a machine Mr , this job
contributes kpj/srj to the objective value;

since now the ’weight’ is also job-dependent, we cannot
simply sort the ’weights’

assignment problem:

n jobs
nm machine positions (k , r) (k-last position on Mr)
assigning job j to (k , r) has costs kpj/srj
find an assignment of minimal costs of all jobs to machine
positions

leads to optimal solution of R ||∑Cj in polynomial time

Parallel machine models: Total Weighted Completion Time

Parallel machines: P ||∑ wjCj :

Problem 1||∑ wjCj is solvable via the WSPT-rule (Lecture 2)

Problem P2||∑ wjCj is . . .

Parallel machine models: Total Weighted Completion Time

Parallel machines: P ||∑ wjCj :

Problem 1||∑ wjCj is solvable via the WSPT-rule (Lecture 2)

Problem P2||∑ wjCj is already NP-hard, but

Problem P2||∑ wjCj is pseudopolynomial solvable

Problem P ||∑ wjCj is NP-hard in the strong sense
Proof by reduction using 3-PARTITION as exercise

Approximation:

Parallel machine models: Total Weighted Completion Time

Parallel machines: P ||
∑

wjCj :

Problem 1||∑ wjCj is solvable via the WSPT-rule (Lecture 2)

Problem P2||∑ wjCj is already NP-hard, but

Problem P2||∑ wjCj is pseudopolynomial solvable

Problem P ||∑ wjCj is NP-hard in the strong sense
Proof by reduction using 3-PARTITION as exercise

Approximation: the WSPT-rule gives an 1

2
(1 +

√
2)

approximation
Proof is not given; uses fact that worst case examples have
equal wj/pj ratios for all jobs

