Chip Design Summer term 2010

Exercises 12

1) Given an instance of the MIN-MAX RESOURCE SHARING PROBLEM, σ -approximate bounded block solvers are oracles $f_c : \mathbb{R}^{\mathcal{B}_c}_+ \times \mathbb{R}_+$ such that for all $y \in \mathbb{R}^{\mathcal{R}}_+$ and $\mu \leq 0$ we have $g_c(f_c(y,\mu)) \leq \mu \mathbb{1}$ and $y^\top g_c(f_c(y,\mu)) \leq \sigma \inf\{y^\top g_c(b) | b \in \mathcal{B}_c, g_c(b) \leq \mu \mathbb{1}\}$ for all $c \in \mathcal{C}$ (where $\mathbb{1}$ is the all-one vector). For $\mu = \infty$ we have the usual unbounded block solvers.

Show that the RESOURCE SHARING ALGORITHM can be modified for instances with $\lambda^* \leq 1$ and bounded block solvers such that it computes for $0 < \delta, \delta' < 1$ a $(\sigma(1 + \delta) + \frac{\delta'}{\lambda^*})$ -approximate solution in $O(\theta|\mathcal{C}|\log|\mathcal{R}|(\log|\mathcal{R}| + (\delta\delta')^{-1}\sigma))$ time (compare to Theorem 4.12). To this end show that at most $t|\mathcal{C}|$ oracle calls are sufficient.

(4 points)

2) Given a pair (G, H) of undirected graphs on the same set of vertices, capacities $u: E(G) \to \mathbb{R}_+$ and demands $b: E(H) \to \mathbb{R}_+$.

A CONCURRENT FLOW of value $\alpha > 0$ is a family $(x^f)_{f \in E(H)}$, where x^f is an *s*-*t*-flow of value $\alpha \cdot b(f)$ in $(V(G), \{(v, w), (w, v) | \{v, w\} \in E(G)\})$ for each $f = \{t, s\} \in E(H)$, and

$$\sum_{f \in E(H)} \left(x^f((v,w)) + x^f((w,v)) \right) \le u(e)$$

for all $e = \{v, w\} \in E(G)$.

The MAXIMUM CONCURRENT FLOW PROBLEM is to find a concurrect flow with maximum value α .

Prove that the MAXIMUM CONCURRENT FLOW PROBLEM is a special case of the MIN-MAX RESOURCE SHARING PROBLEM. How can you implement

- a) unbounded block solvers and
- b) bounded block solvers?

(4 points)

Prof. Dr. Jens Vygen Dr. Jens Maßberg 3) Let $k \ge 2$ and consider the following instance of the RESOURCE SHARING PROB-LEM:

$$\mathcal{C} := \{c\}, \ \mathcal{R} := \{r_1, \dots, r_{k+1}\}, \ \mathcal{B}_c := \operatorname{conv}(\{b_1, b_2\}) \text{ with}$$

i) $g_c(b_1) := (1, 0, \dots, 0),$
ii) $g_c(b_2) := (0, 1, \dots, 1),$
iii) $g_c(\alpha b_1 + (1 - \alpha)b_2) := \alpha g_c(b_1) + (1 - \alpha)g_c(b_2) \text{ for } 0 \le \alpha \le 1.$

Assume $\sigma = 1$, i.e. the block solvers f_c , $c \in C$, always returns an optimum solution. Show that computing a $(1 + \omega)$ -approximate solution for this instance using the RE-SOURCE SHARING ALGORITHM requires $\Theta(\omega^{-2} \ln k)$ phases.

(4 points)

4) Let G be a directed graph with distances $l : E(G) \to \mathbb{R}_+$, $L \in V(G)$ a vertex that is reachable from any other vertex, and $t \in V(G)$. For $v \in V(G)$ let $d(v) := \max\{0, \operatorname{dist}_l(v, L) - \operatorname{dist}_l(v, t)\}$ (where $\operatorname{dist}_l(v, w)$ denotes the length of a shortest $v \cdot w$ path in G with respect to l). For $e = (v, w) \in E(G)$ define l'(e) := l(e) - d(v) + d(w). Let $s \in V(G)$ and P a directed s-t path in G. Prove that $l'(e) \geq 0$ for all $e \in E(G)$ and that P is a shortest e t path with respect to

Prove that $l'(e) \ge 0$ for all $e \in E(G)$ and that P is a shortest s-t path with respect to l if and only if it is a shortest s-t path with respect to l'.

(4 points)

Deadline: July 13 before the lecture (12.15 pm).

Das nächste Treffen der Mentorengruppe des Forschungsinstituts fuer Diskrete Mathematik findet am Dienstag, den 13. Juli um 18:00 Uhr im Konferenzraum des Arithmeums statt. Das Thema lautet Rechteckpackungen, alle interessierten Studenten sind herzlich eingeladen.