1) Implement the $O(n^3)$-time algorithm from exercise 2.1 to compute the bounding box net length for a set of sets of rectangles.

The implementation must be done either in the C++ or C programming language respecting the C/C++ standard from 1999. You can easily achieve this by using the GNU-compiler (gcc or g++) and by including only standard headers (including the STL).

The input should be read either from an input pipe or directly from a file. The input format is as follows. The first line contains a number $n \in \mathbb{N}$ specifying the number of sets of rectangles. Then n block are following, each containing the information for one set. The first line of each block contains the number of rectangles in the corresponding set. The next k lines contain the four coordinates of one rectangle: $x_{\min}, y_{\min}, x_{\max}, y_{\max}$.

The values define the rectangle $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}] \subset \mathbb{R}^2$. Note that the rectangles might be 2-, 1- or 0-dimensional and might overlap other rectangles.

In the following example there are two sets of rectangles, the first one containing three, the second one two rectangles:

```
2
3
0 0 3 4
3 3 5 4
1 2 5 2
2
4 0 6 1
3 4 5 5
```

The program should write the result (coordinates of a bounding box rectangle and the bounding box net length) to the standard output. Here for example:

```
bounding box: 4 1 4 2
bounding box netlength: 1
```

More examples can be found on the web page of the exercises class. (12 points)
2) Let \(r \) be a pin and \(\alpha > 0 \).

- If \(r \) is a logical source, replace each signal \((a, s, \zeta, \xi) \in \Sigma(r)\) by \((a + \alpha, s, \zeta, \xi)\), i.e. all signals start \(\alpha \) later.
- If \(r \) is no logical source, replace delay\(_{(p,r),z}(\xi, s)\) by delay\(_{(p,r),z}(\xi, s) + \alpha\) for all \(p \in \delta^{-}(r), z, \zeta \) and \(s \), i.e. all signals at \(r \) are additionally delayed by \(\alpha \).

Let \(\text{slack}_{late}(r) \) be the slack at \(r \) according to the original information. For a logical sink \(q \) denote by \(\Sigma(q) \) and \(\Sigma'(q) \) the signals at \(q \) calculated using the original and the modified delays, respectively.

Prove that for each logical sink \(q \) and all \((a', s, \zeta, \xi) \in \Sigma'(q)\) there exists an \(a \in \mathbb{R} \) with \((a, s, \zeta, \xi) \in \Sigma(q)\) and

\[
a' \leq \max\{a, \text{rat}_{late}(q, s, \zeta, \xi)\}
\]

if and only if \(\alpha \leq \text{slack}_{late}(r) \). (4 points)

3) Let \(Y \) be a Steiner tree for a terminal set \(T \) in which all leaves are terminals. Prove:

- (a) \(|\{v \in V(Y) \setminus T : |\delta_{Y}(v)| > 2\}| \leq |T| - 2\).
- (b) \(\sum_{v \in T}(|\delta_{Y}(v)| - 1) = k - 1 \), where \(k \) is the number of full components in \(T \).

(4 points)

4) Let \(T \) be an instance of the Rectilinear Steiner Tree Problem and \(r \in T \).

For a rectilinear Steiner tree \(Y \) for \(T \) we denote by \(l(Y) \) the maximum length of a path from \(r \) to an element of \(T \setminus \{r\} \) in \(Y \).

- Describe an instance in which no shortest Steiner tree minimizes \(l(Y) \) and no Steiner tree minimizing \(l(Y) \) is shortest.

- Consider the problem of finding a shortest Steiner tree for which \(l(Y) \) is minimum among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid?

(4 points)

Deadline for exercise 1: May 16 (by e-mail to massberg@or.uni-bonn.de).

Deadline for exercises 2-3: May 4 before the lecture (12.15 pm).