Exercise Set 7

Exercise 1:
Consider the MULTIPROCESSOR SCHEDULING PROBLEM problem: Given a finite set A of tasks, a positive number $t(a)$ for each $a \in A$ (the processing time), and a number m of processors, find a partition $A = A_1 \cup \ldots \cup A_m$ of A into m disjoint sets such that $\max_{i=1}^m \sum_{a \in A_i} t(a)$ is minimum.

(i) Show that the problem is NP-hard.

(ii) Show that the greedy heuristic (subsequently assigning a task to the processor with the currently smallest load in any order) is a 2-approximation.

(iii) Show that for each fixed m the problem has a fully polynomial-time approximation scheme.

(4+3+3 Points)

Exercise 2:
Let $k \geq 2$ be a fixed integer. The k-PARTITION problem is the following special case of BIN PACKING: Given $n = km$ integers a_1, \ldots, a_n, adding up to mC, and such that $\frac{C}{k+1} < a_i < \frac{C}{k-1}$ for all i, is there a partition of these numbers into m groups of k numbers, such that the sum in each group is precisely C. Show that 4-PARTITION is NP-complete.

(4 Points)

Exercise 3*:
Consider the problem of BIN PACKING where $a_i > c$ holds for $1 \leq i \leq n$ and some constant $c \geq 0$. Is there a $c < \frac{1}{3}$ such that the problem can be solved in polynomial time?

(4 Bonus Points)

Please return the exercises until Tuesday, June 9nd, at 2:15 pm.