1

Approximation Algorithms Summer term 2009

Prof. Dr. S. Hougardy Jan Schneider

Exercise Set 6

Exercise 1:

Consider the FRACTIONAL MULTIKNAPSACK problem: Given natural numbers m, n, w_i, c_{ij} , and W_j for $1 \le i \le n$ and $1 \le j \le m$, find $x_{ij} \in [0, 1]$ satisfying $\sum_{j=1}^m x_{ij} = 1$ for all $1 \le i \le n$ and $\sum_{i=1}^n x_{ij} w_{ij} \le W_j$ for all $1 \le j \le m$, such that $\sum_{i=1}^n \sum_{j=1}^m x_{ij} c_{ij}$ is minimum. Provide a polynomial-time combinatorial algorithm for this problem or prove that it is NP-hard.

Exercise 2:

Suppose that in an instance a_1, \ldots, a_n of the BIN PACKING problem we have $a_i > \frac{1}{3}$ for $1 \le i \le n$.

- (i) Reduce the problem to the CARDINALITY MATCHING problem.
- (ii) Describe a linear-time algorithm that solves the problem.

Exercise 3:

An algorithm for the BIN PACKING problem is called monotone if for inputs S and T with $S \subseteq T$ the algorithm needs at least as many bins for T as for S. Prove:

- (i) Next Fit is monotone.
- (ii) First Fit is not monotone.

(3+3 Points)

(3+2 Points)

(4 Points)

Please return the exercises until Tuesday, May 26th, at 2:15 pm.