Exercise Set 3

Exercise 1:

Formulate fast 2-factor approximation algorithms for the following problems and prove the approximation factor:

- (i) Given an undirected graph G = (V, E), what is the diameter of G? (The diameter of G is defined as $\operatorname{diam}(G) := \max_{v,w \in V} \operatorname{dist}(v,w)$, where $\operatorname{dist}(v,w)$ is the length of a shortest v-w-path.)
 - Hint: Linear runtime is possible.
- (ii) Given a directed graph with edge weights, find a directed acyclic subgraph of maximum weight.

(4+4 Points)

Exercise 2:

Consider the following greedy algorithm for Vertex Cover: Start with $C = \emptyset$. While there are still edges in G, choose the node in G with the largest degree, add it to C, and delete it from G.

- (i) Show that the algorithm never produces a solution which is more than $\log n$ times the optimum.
- (ii) Find a family of graphs in which the $\log n$ bound is achieved in the limit.

(4+2 Points)

Exercise 3:

Show that an otherwise polynomial-time algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

(3 points)

Exercise 4:

Consider an optimization problem \mathcal{P} and the corresponding decision problem \mathcal{P}' . Show that if \mathcal{P}' can be solved in polynomial time, then \mathcal{P} can also be solved in polynomial time.

(3 points)

Please return the exercises until Tuesday, May 5th, at 2:15 pm.