Approximation Algorithms Summer term 2009 Prof. Dr. S. Hougardy Jan Schneider

Exercise Set 2

Exercise 1:

Prove the *NP*-completeness of the following problems:

(i) INSTANCE: Natural numbers W and H and pairs $(w_i, h_i) \in \mathbb{N}^2$ for $1 \leq i \leq n$. TASK: Is there a disjoint axis-parallel packing of the n rectangles with widths w_i and heights h_i inside a rectangle of width W and height H. Precisely, are there pairs $(x_i, y_i) \in \mathbb{N}^2$ for $1 \leq i \leq n$ such that

-
$$1 \le i \le n \to R_i \subseteq (0, W) \times (0, H)$$

- $(x, y) \in \mathbb{R}^2 \to |\{i \mid (x, y) \in R_i\}| \le 1,$

where $R_i := (x_i, x_i + w_i) \times (y_i, y_i + h_i)$. Hint: Transformation from PARTITION

(ii) INSTANCE: Natural numbers A, a_1, \ldots, a_n . TASK: Is there a disjoint axis-parallel packing of the *n* squares with side lengths a_i inside a rectangle with area A.

(4+4 Points)

Exercise 2:

Prove the *NP*-completeness of the following problems:

- (i) INSTANCE: An undirected graph G = (V, E) and an integer k. TASK: Is there an $X \subseteq V$ with $|X| \leq k$ and $X \cup \Gamma(X) = V$?
- (ii) INSTANCE: An undirected graph G. TASK: Does G contain a Hamiltonian path?

Exercise 3:

CLIQUE is NP-complete. Is it still NP-complete (provided that $P \neq NP$) if restricted to

- (i) bipartite graphs,
- (ii) planar graphs,
- (iii) 2-connected graphs?

(2+2+3 points)

Please return the exercises until Tuesday, April 28st, at 2:15 pm.

(3+3 Points)