Prof. Dr. S. Hougardy Jan Schneider

Exercise Set 1

Exercise 1:

Approximation Algorithms

Summer term 2009

Show that for any polynomial p(n) and any constant c there is an integer n_0 such that $2^{cn} > p(n)$ holds for all $n \ge n_0$.

Exercise 2:

Let f(n) and g(n) be any two of the following functions. For each pair, determine whether $f(n) = \mathcal{O}(q(n))$ or $f(n) = \Omega(q(n))$ or $f(n) = \Theta(q(n))$ holds:

(a) n^2	(b) $n^2 \log n$	(c) 2^n	
(d) $n^{\log n}$	(e) 2^{2^n}	(f) n^2 if n is odd, 2^n otherwise	
			$(\mathbf{A} \mathbf{D} \cdot \mathbf{A})$

Exercise 3:

Describe a Turing machine which mirrors a string. As an input, it should accept a string $a_1 a_2 \ldots a_n$ with $a_i \in \{0, 1\}$ for $1 \le i \le n$. The output should be the reverse string $a_n a_{n-1} \ldots a_1$.

Exercise 4:

Give a linear-time algorithm for SAT which computes a truth assignment where at least half of the clauses are satisfied.

Exercise 5:

Prove that SAT remains NP-complete if each clause contains exactly three literals and each variable is contained in at most four clauses.

(4 points)

Please return the exercises until Tuesday, April 21st, at 2:15 pm.

1

(4 Points)

(3 Points)

(2 points)

(4 points)