Diskrete Mathematik II Sommersemester 2006

Abgabe: Dienstag, 27. Juni, vor der Vorlesung

Achtung: In den folgenden beiden Wochen werden die Übungen und Vorlesungen außerplanmäßig folgendermaßen stattfinden:

Dienstag, 20.6 Übung um 16.15 Uhr Donnerstag, 22.6 Vorlesung um 16.15 Uhr Dienstag, 27.6 Vorlesung um 16.15 Uhr Donnerstag, 29.6 Übung um 14.30 Uhr

Ab Juli geht es dann wie gewohnt weiter.

Übungsblatt 9

Aufgabe 1:

- a) Sei a_1, \ldots, a_n eine Instanz des Bin-Packing Problems mit $a_i > \frac{1}{3}$ für alle i. Reduzieren Sie das Problem auf das Maximum Matching Problem und zeigen Sie, wie es in linearer Zeit gelöst werden kann.
- b) Geben Sie eine Instanz des Bin-Packing Problems an, bei der die optimale Lösung 10 Bins benötigt, der First Fit Algorithmus aber eine Lösung mit 17 Bins findet.
- c) Zeigen Sie, dass es keinen Online $\frac{4}{3}$ Approximationsalgorithmus für das Bin-Packing Problem gibt, falls $P \neq NP$.

(4 Punkte)

Aufgabe 2:

Zeigen Sie, dass es für jedes $\epsilon > 0$ einen polynomiellen Algorithmus gibt, der für jede Instanz $I = \{a_1, \ldots, a_n\}$ des Bin-Packing Problems eine Lösung findet, die die optimale Anzahl an Bins verwendet und die Kapatzitätsschranken um höchstens ϵ überschreitet. (D.h. der Algorithmus findet ein $f: \{1, \ldots, n\} \to \{1, \ldots, \text{OPT}(I)\}$ mit $\sum_{i:f(i)=j} a_i \leq 1+\epsilon$ für alle $j \in \{1, \ldots, \text{OPT}(I)\}$.

Aufgabe 3:

Wir betrachten das sogenannte Multiprocessor Scheduling Problem:

Gegeben: Eine endliche Menge A von Jobs, eine positive Zahl t(a) für jedes $a \in A$ (Joblaufzeit) und m Prozessoren.

Gesucht: Eine Partitionierung $A = A_1 \dot{\cup} \dots \dot{\cup} A_m$ von A in m disjunkte Mengen, so dass $\max_{1 \leq i \leq m} \sum_{a \in A_i} t(a)$ minimal ist.

- a) Zeigen Sie, dass das Problem streng NP-hart ist.
- b) Zeigen Sie, dass der Greedyalgorithmus, der nacheinander die einzelnen Jobs in beliebiger Reihenfolge jeweils einem Prozessor zuordnet, der zur Zeit am wenigsten benutzt wird, ein 2 Approximationsalgorithmus ist.

(4 Punkte)

Aufgabe 4:

Zeigen Sie, dass es für das Multiprocessor Scheduling Problem ein Approximationsschemata gibt.

(4 Punkte)