
Faster Min-Max Resource Sharing

in Theory and Practice

Dirk Müller1 Klaus Radke2 Jens Vygen1

Abstract

We consider the (block-angular) min-max resource sharing problem, which is defined as
follows. Given finite sets R of resources and C of customers, a convex set Bc, called block,
and a convex function gc : Bc → RR+ for every c ∈ C, the task is to find bc ∈ Bc (c ∈ C)
approximately attaining λ∗ := inf{maxr∈R

∑
c∈C(gc(bc))r | bc ∈ Bc(c ∈ C)}.

As usual we assume that gc can be computed efficiently and we have a constant σ ≥ 1
and oracle functions fc : RR+ → Bc, called block solvers, which for c ∈ C and y ∈ RR+ return
an element bc ∈ Bc with y>gc(bc) ≤ σ infb∈Bc

y>gc(b).
We describe a simple algorithm which solves this problem with an approximation guaran-

tee σ(1+ω) for any ω > 0, and whose running time is O(θ(|C|+|R|) log |R|(log log |R|+ω−2))
for any fixed σ ≥ 1, where θ is the time for an oracle call. This generalizes and improves
various previous results.

We also prove other bounds and describe several speed-up techniques. In particular, we
show how to parallelize the algorithm efficiently. In addition we review another algorithm,
variants of which were studied before. We show that this algorithm is almost as fast in
theory, but it was not competitive in our experiments.

Our work was motivated mainly by global routing in chip design. Here the blocks are
mixed-integer sets (whose elements are associated with Steiner trees), and we combine our
algorithm with randomized rounding. We present experimental results on instances resulting
from recent industrial chips, with millions of customers and resources. Our algorithm solves
these instances nearly optimally in less than two hours.

Keywords: min-max resource sharing, fractional packing, fully polynomial approximation
scheme, parallelization, global routing, chip design

Mathematics Subject Classification (MSC 2010): 90C27, 90C90, 90C59, 90C48, 90C06

1Research Institute for Discrete Mathematics, University of Bonn, Lennéstr. 2, 53113 Bonn, Germany
2Department of Computer Science, RWTH Aachen University, Germany. Research was done while

the second author was at the University of Bonn.

1 Introduction

The problem of sharing a set of limited resources between users (customers) in an optimal way is
fundamental. The common mathematical model has been called the min-max resource sharing
problem. Well-studied special cases are the fractional packing problem and the maximum
concurrent flow problem. The only known exact algorithms for these problems use general linear
(or convex) programming. Shahrokhi and Matula [19] were the first to design a combinatorial
approximation scheme for the maximum concurrent flow problem. Subsequently, this result was
improved, simplified, and generalized many times.

This paper is a further step on this line. In particular we provide a simple algorithm and a
simple proof of the best performance guarantee in significantly smaller running time. We also
describe several techniques that speed up the algorithm in practice and parallelize it. Moreover,
we implemented the algorithm and show experimental results for an application to global routing
of VLSI chips.

The problem. The (block-angular) Min-Max Resource Sharing Problem is defined as
follows. Given finite sets R of resources and C of customers, an implicitly given convex set Bc,
called block, of feasible solutions for customer c (for c ∈ C), and a nonnegative convex function
gc : Bc → RR+ for c ∈ C specifying the resource consumption, the task is to find bc ∈ Bc (c ∈ C)
approximately attaining

λ∗ := inf

{
max
r∈R

∑
c∈C

(gc(bc))r

∣∣∣∣∣ bc ∈ Bc (c ∈ C)

}
, (1)

i.e. approximately minimizing the largest resource consumption.
As usual we assume that gc can be computed efficiently and we have a constant σ ≥ 1

and oracle functions fc : RR+ → Bc, called block solvers, which for c ∈ C and y ∈ RR+ return an
element bc ∈ Bc with y>gc(bc) ≤ σ optc(y), where optc(y) := infb∈Bc y

>gc(b). Block solvers are
called exact if σ = 1 and strong if σ > 1 can be chosen arbitrarily small; otherwise they are
called weak.

Note that previous authors often required that Bc is compact, but we do not need this
assumption. Some algorithms require bounded block solvers: for c ∈ C, y ∈ RR+ , and µ > 0, they
return an element bc ∈ Bc with gc(bc) ≤ µ1 and y>gc(bc) ≤ σ inf{y>gc(b) | b ∈ Bc, gc(b) ≤ µ1}
(by 1 we denote the all-one vector). They can also be exact, strong, or weak.

All algorithms that we consider are fully polynomial approximation schemes relative to σ, i.e.
for any given ω > 0 they compute a solution bc ∈ Bc (c ∈ C) with maxr∈R

∑
c∈C(gc(bc))r ≤ σ(1+

ω)λ∗, and the running time depends polynomially on ω−1. By θ we denote the time for an oracle
call (to a block solver). Moreover, we write ρ := max

{
1, sup

{ (gc(b))r
λ∗ | r ∈ R, c ∈ C, b ∈ Bc

}}
and R̄ := {r ∈ R | ∃c ∈ C, b ∈ Bc with (gc(b))r > λ∗}.

Previous work. Grigoriadis and Khachiyan [7] were the first to present such an algorithm
for the general Min-Max Resource Sharing Problem. It makes O(|C|2 log |R|(log |C| +
ω−2)) calls to a strong bounded block solver. They also have a randomized version whose
expected running time is |C| times faster. In [8] they proposed an algorithm which needs
O(|C|2 log |R|(log |R| + ω−2)) calls to a strong bounded block solver or O(|C||R|(log |R| +
ω−2 logω−1)) calls to a strong unbounded block solver.

1

Jansen and Zhang [12] generalized this and need O(|C||R|(log |R|+ ω−2 logω−1)) calls to a
weak unbounded block solver. They also showed that O(|C||R|(log |R|+ω−2)) calls to a strong
unbounded block solver suffice.

The first part of Table 1 summarizes the previous results. Khandekar [13] claimed to have
an algorithm with O((|C|+ |R|) log(|C|+ |R|)(log log |R|+ ω−2)) calls to a strong block solver,
but his proof contains two gaps (which we point out in the appendix).

block solver number of oracle calls
Grigoriadis, Khachiyan [7] strong, bounded O(|C|2 log |R|(log |C|+ ω−2))
Grigoriadis, Khachiyan [7] strong, bounded O(|C| log |R|(log |C|+ ω−2)) (randomized)
Grigoriadis, Khachiyan [8] strong, bounded O(|C|2 log |R|(log |R|+ ω−2))
Grigoriadis, Khachiyan [8] strong, unbounded O(|C||R|(log |R|+ ω−2 logω−1))
Jansen, Zhang [12] strong, unbounded O(|C||R|(log |R|+ ω−2))
Jansen, Zhang [12] weak, unbounded O(|C||R|(log |R|+ ω−2 logω−1))
our algorithm (Section 4) weak, unbounded O((|C|+ |R|) log |R|(log log |R|+ ω−2))
our algorithm (Section 5) weak, unbounded O(min{|C|ρ, |C|+ |R̄|} log |R|(log |R|+ ω−2)
our algorithm (Section 5) weak, bounded O(|C| log |R|(log |R|+ ω−2)
Young-Khandekar (Section 7) weak, unbounded O((|C|+ |R|) log(|C|+ |R|)(log log |R|+ ω−2)

Table 1: Approximation algorithms for the Min-Max Resource Sharing Problem. Running
times are shown for fixed σ ≥ 1.

Fractional packing. The special case where the functions gc (c ∈ C) are linear is often
called the Fractional Packing Problem (although sometimes this name is used for differ-
ent problems). For this special case faster algorithms using unbounded block solvers are known.
Plotkin, Shmoys and Tardos [16] require a strong block solver and O(ω−2ρ′|C| log(|R|ω−1))
oracle calls, where ρ′ := max{

∑
c∈C(gc(bc))r|r ∈ R, bc ∈ Bc (∀c)}. Note that ρ′ ≤ λ∗|C|ρ.

They also present a randomized version that is sometimes faster. Charikar et al. [4] subse-
quently relaxed the unrandomized result to weak block solvers in the same number of oracle
calls. Villavicencio and Grigoriadis [20] analyzed a deterministic variant of the randomized
algorithm of Grigoriadis and Khachiyan [7] in the linear case and bounded the number of
calls to a strong bounded block solver by O(|C| log |R|(log |C| + ω−2)). They claim (with-
out proof) that their result also holds in the nonlinear case. Young’s algorithm [22] makes
O((λ∗)−1ω−2ρ′|C| log |R|) calls to a weak block solver for any fixed σ ≥ 1. The algorithm of
Garg and Könemann [6] needs O(|C| log |R|(log |R| + ω−2)) calls to an exact bounded block
solver or O((|C|+ |R|) log |R|(log |R|+ ω−2)) calls to an exact unbounded block solver. Young
[23] gives an algorithm for the Mixed Packing and Covering Problem (a generalization of
the Fractional Packing Problem) and presents a binary search technique to approximately
solve the optimization version in O((|C|+ |R|) log(|C|+ |R|)(log log |R|+ω−2)) calls to an exact
unbounded block solver.

Bienstock and Iyengar [2] managed to reduce the dependence on ω from O(ω−2) to O(ω−1).
Their algorithm does not call a block solver, but requires the linear resource consumption
functions to be explicitly specified by a |R| × dim(Bc)-matrix Gc for each c ∈ C. So their
algorithm does not apply to the general problem, but to an interesting special case which includes
the Maximum Concurrent Flow Problem. The algorithm solves O(ω−1

√
Kn log |R|)

separable convex quadratic programs, where n :=
∑

c∈C dim(Bc), and K := max1≤i≤|R|
∑

c∈C k
c
i ,

2

with kci being the number of nonzero entries in the i-th row of Gc.

Our results. We describe a simple algorithm for the general Min-Max Resource Sharing
Problem. Our algorithm and its analysis use ideas of Garg and Könemann [6], Plotkin, Shmoys
and Tardos [16], and Young [23].

With a weak unbounded block solver (the most general case) we obtain a running time of
O(θ(|C| + |R|) log |R|(log log |R| + ω−2)) for any fixed σ ≥ 1. This generalizes and improves
results for the linear case and decreases the best known running time for the general Min-Max
Resource Sharing Problem significantly (cf. Table 1).

With a weak bounded block solver we also get a running time ofO(θ|C| log |R|(log |R|+ω−2)).
We also get other bounds, depending on ρ or on |R̄|, that are often better in practice. Moreover,
we describe several speed-up techniques that drastically decrease the running time in practice.
In particular, we show how our algorithm can be parallelized efficiently without loss of quality.

Moreover, we analyze an algorithm essentially due to Young [23] and generalized by Khan-
dekar [13]. We obtain the same worst-case running time as claimed (but not correctly proved)
by Khandekar [13], which is slightly worse than the bound for the other algorithm (cf. Table 1).

The motivation of our practical work is an application to global routing in chip design.
Here the blocks are mixed-integer sets whose elements are associated with Steiner trees. We
describe a fractional relaxation which is the Min-Max Resource Sharing Problem. As
block solvers we need an approximation algorithm for Steiner trees in graphs. We also generalize
the randomized rounding paradigm and obtain an improved bound.

Finally we present experimental results for instances from current industrial chips, with
millions of customers and resources. We show that such problems can be solved within a few
percent of optimum in less than two hours. In our experiments, our algorithm outperformed
the Young-Khandekar algorithm.

Structure of the paper. Our paper is organized as follows. In Section 2 we review some
simple and well-known a priori bounds. In Section 3 we present our core algorithm, which is
the basis of most of the remaining paper. In Section 4 we combine it with scaling and binary
search techniques and obtain our main theoretical result, improving the best known running
time for the general Min-Max Resource Sharing Problem.

In Section 5 we present further bounds, some of which are even better for many practical
instances. We also show how to reduce the number of oracle calls in practice significantly. In
Section 6 we parallelize our algorithm without losing our performance guarantees. In Section 7
we generalize Young’s [23] algorithm, using and correcting ideas of Khandekar [13].

In Section 8 we introduce our application: global routing in chip design. We describe the
constraints and objectives and observe that a fractional relaxation is our Min-Max Resource
Sharing Problem. The oracles can be implemented by an approximation algorithm for the
Steiner tree problem in graphs. We also describe how randomized rounding works here.

Section 9 contains implementation details that require consideration. Some of these are
needed to understand the experimental results, which we present in Section 10.

2 Bounds

We first recall two well-known results that yield a priori bounds on the optimum λ∗:

Lemma 1. Let y ∈ RR+ be some cost vector with y>1 6= 0. Then
P
c∈C optc(y)

y>1
≤ λ∗.

3

Proof. Let δ > 0 and (bc ∈ Bc)c∈C a solution with maxr∈R
∑

c∈C(gc(bc))r < (1 + δ)λ∗. Then∑
c∈C optc(y)
y>1

≤
∑

c∈C y
>gc(bc)

y>1
<

(1 + δ)λ∗y>1
y>1

= (1 + δ)λ∗.
2

Lemma 2. Let λub := max
r∈R

∑
c∈C

(gc(fc(1)))r. Then
λub

|R|σ
≤ λ∗ ≤ λub.

Proof. Trivially, λ∗ ≤ λub. Moreover, by Lemma 1 we have

λ∗ ≥
∑

c∈C optc(1)
1>1

≥
∑

c∈C 1
>gc(fc(1))
σ1>1

=
1
|R|σ

∑
r∈R

∑
c∈C

(gc(fc(1)))r ≥
λub

|R|σ
.

2

3 The Core Algorithm

Our algorithm and its analysis use ideas of Garg and Könemann [6], Plotkin, Shmoys and Tardos
[16], and Young [23]. The core algorithm can be described as follows.

Resource Sharing Algorithm
Input: An instance of the Min-Max Resource Sharing Problem, i.e. finite sets R

and C, and for each c ∈ C an oracle function fc : RR+ → Bc and a convex function
gc : Bc → RR+ with the property y>gc(fc(y)) ≤ σ optc(y) for all y ∈ RR+ and a
constant σ ≥ 1. Parameters ε > 0 and t ∈ N.

Output: For each c ∈ C a convex combination of vectors in Bc , given by
∑

b∈Bc xc,bb. A
cost vector y ∈ RR+ .

Set αr := 0 and yr := 1 for each r ∈ R.
Set Xc := 0 and xc,b := 0 for each c ∈ C and b ∈ Bc.
for p := 1 to t do

while there exists a c ∈ C with Xc < p do
Let c ∈ C with Xc < p.
AllocateResources(c).

Set xc,b := 1
txc,b for each c ∈ C and b ∈ Bc.

Procedure AllocateResources(c ∈ C):
Set b := fc(y) and a := gc(b).
Set ξ := min{p−Xc, 1/max{ar | r ∈ R}}.
Set xc,b := xc,b + ξ and Xc := Xc + ξ.
Set α := α+ ξa.
foreach r ∈ R with ar 6= 0 do

Set yr := eεαr .

Of course x is not stored explicitly, but rather by a set of triples (c, b, xc,b) for those c ∈ C and
b ∈ Bc for which xc,b > 0. We will call the outer iterations (p = 1, . . . , t) of this algorithm phases.
Let kp denote the number of inner iterations in phase p. Let y(p,i), c(p,i), a(p,i), and ξ(p,i) denote y,

4

c, a, and ξ at the end of the i-th inner iteration within the p-th phase (p = 1, . . . , t, i = 1, . . . , kp).
Let y(p) := y(p,kp) be the cost vector at the end of phase p. We write y(p,0) := y(p−1) etc., and y(0)

is the value of y after initialization. The resource prices y can be interpreted as dual variables,
but we do not use duality explicitly.

The Resource Sharing Algorithm yields xc,b ≥ 0 for all b ∈ Bc with
∑

b∈Bc xc,b = 1.
Hence we have a convex combination of vectors in Bc for each c ∈ C. The quality of the solution
can be estimated as follows.

Lemma 3. Let (x, y) be the output of the Resource Sharing Algorithm, and let

λr :=
∑
c∈C

(
gc

(∑
b∈Bc

xc,bb
))

r

and λ := maxr∈R λr. Then

λ ≤ 1
εt

ln
(
1
>y
)
.

Proof. Using the convexity of the functions gc we have for r ∈ R:

λr ≤
∑
c∈C

∑
b∈Bc

xc,b(gc(b))r =
1
t

t∑
p=1

kp∑
i=1

ξ(p,i)(a(p,i))r =
1
t
α(t)
r =

1
εt

ln y(t)
r ≤

1
εt

ln
(
1
>y(t)

)
.

2

Lemma 4. Let σ ≥ 1, and ε > 0. Let ε′ := (eε − 1)σ. If ε′λ∗ < 1, then

1
>y(t) ≤ |R|etε′λ∗/(1−ε′λ∗).

Proof. We will consider the term 1
>y(p) for all phases p. Initially we have 1

>y(0) = |R|. We
can estimate the increase of the resource prices as follows:∑

r∈R
y(p,i)
r =

∑
r∈R

y(p,i−1)
r eεξ

(p,i)(a(p,i))r ≤
∑
r∈R

y(p,i−1)
r + (eε − 1)

∑
r∈R

y(p,i−1)
r ξ(p,i)(a(p,i))r, (2)

because ξ(p,i)(a(p,i))r ≤ 1 for r ∈ R, and ex ≤ 1 + eε−1
ε x for 0 ≤ x ≤ ε.

Moreover, ∑
r∈R

y(p,i−1)
r (a(p,i))r ≤ σ optc(p,i)(y

(p,i−1)). (3)

Using (2), (3), the monotonicity of y, the fact
∑

i:c(p,i)=c ξ
(p,i) = 1 (∀c), and Lemma 1 we get

1
>y(p) ≤ 1

>y(p−1) + (eε − 1)σ
kp∑
i=1

ξ(p,i)optc(p,i)(y
(p,i−1))

≤ 1
>y(p−1) + ε′

∑
c∈C

optc(y
(p))

≤ 1
>y(p−1) + ε′λ∗1>y(p)

and hence

1
>y(p) ≤ 1

>y(p−1)

1− ε′λ∗
.

Combining this with 1
>y(0) = |R| and 1 + x ≤ ex for x ≥ 0 we get, if ε′λ∗ < 1:

1
>y(t) ≤ |R|

(1− ε′λ∗)t
= |R|

(
1 +

ε′λ∗

1− ε′λ∗

)t
≤ |R|etε′λ∗/(1−ε′λ∗).

2

5

Lemma 5. The number of oracle calls is at most

min
{
tΛ, t|C|+ |R

′|
ε

ln
(
1
>y(t)

)}
,

where Λ :=
∑
c∈C

max{1, sup{gc(b)r |r ∈ R, b ∈ Bc}} and R′ :={r∈R|∃c ∈ C, b ∈ Bc : (gc(b))r>1}.

Proof. Obviously there are t|C| inner iterations with ξ = p − Xc, and at most tΛ inner
iterations in total.

Suppose that for r ∈ R′ there are κr inner iterations for which ξ = 1/(ac)r. Each of these
increases yr by the factor eε, so y(t)

r ≥ eεκr . Therefore we get∑
r∈R′

κr ≤
1
ε

∑
r∈R′

ln y(t)
r ≤ |R

′|
ε

ln
(

max
r∈R′

y(t)
r

)
≤ |R

′|
ε

ln
(
1
>y(t)

)
.

2

4 Applying the Core Algorithm

Let Λ and R′ be defined as in Lemma 5. As before, θ denotes the time for an oracle call.

Lemma 6. Given an instance of the Min-Max Resource Sharing Problem, we can decide
in O (θ log |R|min {Λ, |C|+ |R′|}) time either that λ∗ > 1

4σ or that λ∗ ≤ 1
2 .

Proof. We set t := d18 ln |R|e and ε := 1
3 . We have ε′ = (eε − 1)σ ≤ 2σ

5 . Then we run the
Resource Sharing Algorithm but stop it as soon as 1>y > |R|et/9.

If λ∗ ≤ 1
4σ , then ε′λ∗ ≤ 1

10 , and Lemma 4 implies 1>y(t) ≤ |R|et/9. Hence a premature stop
implies λ∗ > 1

4σ .
Otherwise 1>y(t) ≤ |R|et/9, and Lemma 3 implies λ∗ ≤ 1

εt ln(1>y(t)) ≤ ln |R|
εt + 1

9ε ≤
1
6 + 1

3 = 1
2 .

As we have 1
>y ≤ |R|et/9 ≤ |R|3e at any stage, by Lemma 5 the total number of oracle

calls is at most (18 ln |R|+ 1) min {Λ, |C|+ 3|R′|}. 2

Lemma 7. Let 0 < δ, δ′ < 1. Given an instance of the Min-Max Resource Sharing Prob-
lem with λ∗ ≤ 1, we can compute a (σ(1+δ)+ δ′

λ∗)-approximate solution in O(θ log |R|min{Λ, |C|+
|R′|σ}(δδ′)−1σ) time.

Proof. We choose ε := δ
3σ and t := d ln |R|

εδ′ e. We have ε ≤ 1
3 , e

1
3 < 7

5 , and thus eε−1 ≤ ε(1+ 3
5ε).

We get ε′ = (eε − 1)σ ≤ ε(1 + 3
5ε)σ ≤

2δ
5 ≤

2
5 and 1

1−ε′λ∗ ≤
1

1−ε′ ≤ 1 + 5
3ε
′ ≤ 1 + 2δ

3 and
ε′

ε(1−ε′λ∗) ≤ σ(1 + 3
5ε)(1 + 2δ

3) ≤ σ(1 + δ
5 + 2δ

3 + 2δ2

15) ≤ σ(1 + δ).
We run the Resource Sharing Algorithm and obtain a solution x. As ε′λ∗ < 1, Lemma

3 and Lemma 4 yield:

max
r∈R

∑
c∈C

(
gc

(∑
b∈Bc

xc,bb
))

r
≤ 1

εt

(
ln |R|+ tε′λ∗

1− ε′λ∗
)
≤ δ′ +

ε′

ε(1− ε′λ∗)
λ∗ ≤ δ′ + σ(1 + δ)λ∗.

Using Lemma 5 and Lemma 4 we obtain that the number of oracle calls is at most

min
{
tΛ, t|C|+ |R′|

ε ln(1>y(t))
}
≤ min

{
tΛ, t|C|+ |R′|

ε (ln |R|+ tελ∗ ε′

ε(1−ε′λ∗))
}

≤ d ln |R|
εδ′ emin {Λ, |C|+ |R′|δ′ + |R′|λ∗σ(1 + δ)}

= O
(
σ ln |R|
δδ′ min {Λ, |C|+ |R′|σ}

)
. 2

Together with binary search we get a fully polynomial approximation scheme relative to σ:

6

Theorem 8. Given an instance of the Min-Max Resource Sharing Problem with σ-
optimal block solvers for some σ ≥ 1. Then a σ(1 + ω)-approximate solution can be computed
in O(θ log |R|((|C|+ |R|) log log |R|+ (|C|+ |R|σ)σω−2)) time.

Proof. We first compute fc(1) for all c ∈ C and set λub := maxr∈R
∑

c∈C(gc(fc(1)))r. W.l.o.g.
λub > 0 since otherwise we already have an optimum solution. By Lemma 2 we have λub

|R|σ ≤
λ∗ ≤ λub.

For j ∈ {0, . . . , blog2 |R|c} we define a new instance I(j) by setting g(j)
c (b) := 2j−1gc(b)/λub

for each c ∈ C and b ∈ Bc. Let λ∗(j) be the optimum of the instance I(j). We have λ∗(0) ≤ 1
2

and λ∗(blog2 |R|c) > 1
4σ . By binary search and O(log log |R|) applications of Lemma 6 we obtain

an index j with λ∗(j) ≤ 1
2 and λ∗(j+1) > 1

4σ . We have 1
4σ < λ∗(j+1) ≤ 1.

We finally apply Lemma 7 to I(j+1) with δ := ω
2 and δ′ := ω

8 . We get an approximation
guarantee of σ(1 + δ) + δ′/λ∗(j+1) < σ(1 + ω

2) + 4σω
8 = σ(1 + ω).

The total running time is dominated by applying Lemma 6 O(log log |R|) times and Lemma
7 once with δ = ω

2 and δ′ = ω
8 , and is hence as claimed. 2

For every fixed σ ≥ 1 the running time is O(θ log |R|(|C|+ |R|)(log log |R|+ ω−2)).

5 Improvements in Practice

Theorem 8 gives a much better worst-case running time for the general Min-Max Resource
Sharing Problem than was known before. In practice this can often be improved even further,
as we will discuss in this and the next section.

Theoretical bounds. In the application of Lemma 7 at the end of the proof of Theorem 8
we can actually do better for many practical instances. Let ρ := max{1, sup{(gc(b))r/λ∗ | r ∈
R, c ∈ C, b ∈ Bc}} and R̄ := {r ∈ R | ∃c ∈ C, b ∈ Bc with (gc(b))r > λ∗}. These are often small
in practice.

Theorem 9. Given an instance of the Min-Max Resource Sharing Problem with σ-
optimal block solvers for some σ ≥ 1. Then a σ(1 + ω)-approximate solution can be computed
in O(θ log |R|((|C|+ |R|) log log |R|+ min{ρ|C|, |C|+ |R̄|σ}σω−2)) time.

Proof. Note that we have Λ ≤ ρ|C| and R′ ⊆ R̄ in the application of Lemma 7 at the end of
the proof of Theorem 8, because

(g(j+1)
c (b))r =

2j(gc(b))r
λub

=
(gc(b))rλ∗(j+1)

λ∗
≤ (gc(b))r

λ∗
≤

{
ρ if r ∈ R̄
1 if r ∈ R \ R̄. 2

By scanning the values of j one by one we also get the following bounds.

Theorem 10. Given an instance of the Min-Max Resource Sharing Problem with σ-
optimal block solvers for some σ ≥ 1. Then a σ(1 + ω)-approximate solution can be computed
in O(θ log |R|(min{ρ|C|, |C|+ |R̄|} log |R|+ min{ρ|C|, |C|+ |R̄|σ}σω−2)) time.

Proof. We use the same notation as in the proof of Theorem 8. Instead of binary search, we
scan the possible values of j one by one. For j = 0 we know that λ∗(0) ≤ 1

2 . While λ∗(j) ≤ 1
2 ,

we increment j by one and apply Lemma 6. Eventually, after at most blog |R|c iterations, we
obtain an index j with λ∗(j+1) > 1

4σ and λ∗(j) ≤ 1
2 , and finally apply Lemma 7 as above.

7

Note that we have Λ ≤ ρ|C| and R′ ⊆ R̄ every time because λ∗(j) ≤ 1 whenever we consider
index j. The total running time is dominated by applying Lemma 6 O(log |R|) times and
Lemma 7 once with δ = ω

2 and δ′ = ω
8 , and is hence as claimed. 2

Corollary 11. Given an instance of the Min-Max Resource Sharing Problem with σ-
optimal bounded block solvers for some σ ≥ 1. Then a σ(1 + ω)-approximate solution can be
computed in O(θ|C| log |R|(log |R|+ ω−2σ)) time.

Proof. In the proof of Theorem 10 the algorithm is called only for instances I(j) where we
know λ∗(j) ≤ 1. Hence we can restrict Bc to B(j)

c := {b ∈ Bc | g(j)
c (b) ≤ 1} in iteration j without

changing the optimum. This means that we can choose Λ = |C|. With the bounded block solver
we can optimize over B(j)

c . 2

Stopping early. In practice (e.g., in the application described in Section 8) we are often
only interested in a solution if λ∗ ≤ 1. If ε′ < 1, we can then stop the Resource Sharing
Algorithm when 1

>y(p) > |R|epε′/(1−ε′) at any stage in phase p, because this implies λ∗ > 1
by Lemma 4.

Reuse of previous solutions. We now show how to reduce the number of oracle calls. For
each c ∈ C we assume to have a vector lc ∈ RR+ which for each resource r ∈ R gives a lower
bound on the amount of r that has to be used to satisfy customer c, i.e. (lc)r ≤ (gc(b))r for
each b ∈ Bc and r ∈ R. We can set (lc)r := 0 for all c and r, but better lower bounds improve
running times in practice.

We propose a block solver that calls our given σ-approximate block solver only if the previous
result is not good enough anymore. More precisely, we introduce a new parameter τ ≥ 1
and new variables bc ∈ Bc, zc ∈ R+, and ŷc ∈ RR+ for c ∈ C, and replace the first line of
AllocateResources by:

if Xc = 0 or y>gc(bc) > τ(zc + σ(y − ŷc)>lc) then
Set bc := fc(y), zc := y>gc(bc), and ŷc := y.

Set b := bc and a := gc(b).

To show that this behaves like a στ -approximate block solver, we observe that we have a
near-optimum solution even in iterations in which we do not call the block solver:

Lemma 12. For p = 1, . . . , t and i = 1, . . . , kp we have

(y(p,i−1))>a(p,i) ≤ στ optc(p,i)(y
(p,i−1)).

Proof. We show that

(y(p,i−1))>a(p,i) ≤ τ
(
z(p,i)
c + σ(y(p,i−1) − ŷ(p,i)

c)>lc
)

(4)

and
z(p,i)
c + σ(y(p,i−1) − ŷ(p,i)

c)>lc ≤ σ optc(y
(p,i−1)), (5)

where c := c(p,i), and z(p,i)
c and ŷ(p,i)

c are the values of zc and ŷc, respectively, in the i-th iteration
of phase p. Both inequalities are evident if the oracle fc is called in iteration i of phase p and
z

(p,i)
c = (y(p,i−1))>gc(fc(y(p,i−1))) = (y(p,i−1))>a(p,i) and ŷ

(p,i)
c = y(p,i−1). Inequality (4) also

holds in the other case, in which bc, zc, and ŷc do not change. Inequality (5) holds because zc
and ŷc have remained constant since the previous iteration (p′, i′) with c(p′,i′) = c, the y-variables
have only increased, and (lc)r ≤ (gc(b))r for each b ∈ Bc and r ∈ R. 2

8

6 Parallelization

Although the proof of Lemma 4 uses a total order of oracle calls in a phase, it does not require
a particular order. We can thus perform inner iterations of the Resource Sharing Algo-
rithm in parallel and analyze the increase of resource prices in a total order determined by the
algorithm. The intention is that if this order provides approximate time stamps for resource
price updates, even without coordination between concurrently performed block solver calls and
resource price updates, a σ-optimal solution w.r.t. observed resource prices y′ is in most cases
στ -optimal w.r.t. resource prices that would result from applying results in the determined
order, for a small τ ≥ 1. In order to maintain our performance guarantee we need to check
whether the solutions satisfy this condition and otherwise reject them and reschedule the corre-
sponding customers for sequential recomputation at the end of the phase. As we allow resource
prices to change during the computations of a block solver, we require volatility-tolerant block
solvers:

Definition 13. Let c ∈ C and Solverc be a procedure that gets a resource price oracle H : R →
R+ as input and produces a pair (b, z) ∈ Bc×R+ as output. Solverc is called a volatility-tolerant
block solver if for any call to it the following condition is satisfied:

For r ∈ R let Yr be the set of resource prices sampled by calling H(r) in this execution of
Solverc. Then there is a y′r ∈ Yr for each r ∈ R with Yr 6= ∅ such that for each vector y ∈ RR+
with yr = y′r for r ∈ R with Yr 6= ∅ we have z = y>gc(b) and z ≤ σ optc(y).

Note that this implies (gc(b))r = 0 for each r ∈ R with Yr = ∅. Trivially, volatility-tolerant
block solvers can be implemented by sampling the price of each resource once and then calling
a standard block solver which gets the resulting static vector as input. Often the first step can
be avoided: For example, Dijkstra’s shortest path algorithm can be implemented such that the
price of each edge is queried at most once.

We use a shared-memory model in which communication of variable updates is not done
explicitly, but implicitly by letting all processors concurrently access the same variables. This
model is becoming more and more standard in hardware, with a continuously growing number
of processors jointly using the same memory. A particular difficulty arises from the different
latencies with which processors observe changes of values stored in memory. An implication of
this is that the effects of write operations are not necessarily observed in the same order on
different processors (see e.g. [15]). So-called barrier operations, which we shall define below, are
used to enforce ordering constraints.

To this end, let Or be the set of read operations performed in a program execution, and Ow
the set of write operations. We can assume that each such operation reads or writes a single
variable and does so atomically, i.e. is carried out in a single step and not interrupted by other
operations on the same variable. This is justified by the specifications of current microprocessors
for properly aligned variables of machine word size, see e.g. [11]. We thus have a relation �mem

on Ow which is a total order for write operations on the same variable, and w1 6�mem w2 if
w1, w2 ∈ Ow are operations on different variables. Note that different runs on the same input
can lead to different relations �mem.

For an operation o2 that is executed after o1 on the same processor, we write o1 ≺exec o2.
We write o1 6≺exec o2 if o1 and o2 are performed on different processors. We further assume
to have a mapping rf : Or → Ow which for each read operation r ∈ Or specifies the write
operation w ∈ Ow whose result is read by r.

9

Definition 14. Let r1, r2 ∈ Or with r1 ≺exec r2 , w1, w2 ∈ Ow with w1 ≺exec w2, and wi and rj
operate on the same variable for i, j ∈ {1, 2}, i 6= j. A pair b, b′ of memory barrier operations
with w1 ≺exec b ≺exec w2 and r1 ≺exec b

′ ≺exec r2 guarantees that

w2 �mem rf(r1)⇒ w1 �mem rf(r2).

Instruction reordering, pipelining and speculative execution can also be taken into account.
We do not go further into details here and refer to [9] for a thorough introduction to modern
processor architectures.

In each phase, our Parallel Resource Sharing Algorithm calls the subroutine Par-
allelAllocateResources shown below using any number of processors in parallel, until
Xc + X̄c = p for all c ∈ C, where X̄c records rejected solutions. This is done such that no two
processors work on the same customer concurrently. Then it sets X̄c := 0 for each c ∈ C and
repeats the same step using only one processor.

We use a new global variable n for assigning a unique time stamp to each call of Paral-
lelAllocateResources in a phase, and a vector α′ ∈ RR+ for storing temporary resource
reservations. We set α′r := 0 for each r ∈ R in initialization, and n := 0 at the beginning of
each phase. Our parallel algorithm uses two resource price oracles Hα and Hα′ which return eεx

for an observed value x = αr or x = α′r, respectively, for given r ∈ R. Arithmetic operations
on n and the entries of α and α′ are performed atomically, i.e. reading a variable, determining
its new value and writing the result back is not interleaved with other operations on the same
variable. This can be achieved without locking operations by using processor instructions such
as Compare-and-Swap, which are commonly available on all modern microprocessors.

Procedure ParallelAllocateResources(c ∈ C):
Set (b, z) := Solverc(Hα), a := gc(b) and ξ := min{p−Xc, 1/max{ar | r ∈ R}}.
Set α′ := α′ + ξa.
memory barrier.
Set n := n+ 1.
memory barrier.
Set ȳr := Hα′(r) for r ∈ R with ar > 0.
memory barrier.
Set ȳr := ȳrHα(r)e−εξar for r ∈ R with ar > 0.
if ȳ>a ≤ τz then

Set xc,b := xc,b + ξ and Xc := Xc + ξ. (successful, accept solution)
Set α := α+ ξa.
memory barrier.

else
Set X̄c := X̄c + ξ. (reject solution)

Set α′ := α′ − ξa.

We call each execution of ParallelAllocateResources an inner iteration and define
the value to which it increments n as its time stamp. We denote J (p) ⊆ N the time stamps of
successful inner iterations in phase p, and a(p,i) and ξ(p,i) the vector a and value ξ, respectively,
in the inner iteration of phase p with time stamp n = i. Proving the approximation guarantee
of the Parallel Resource Sharing Algorithm relies on the following fact:

10

Lemma 15. Let 1 ≤ p ≤ t, i ∈ J (p), α(p,i) := α(p−1)+
∑

j∈J(p):j<i ξ
(p,j)a(p,j), and y(p,i)

r := eεα
(p,i)
r

for r ∈ R. Let y′ ∈ RR+ be resource prices observed by Hα in line 1 in the inner iteration of
phase p with time stamp n = i, with y′r := 0 if not queried for r ∈ R, and such that (y′)>a = z.
Further, let y′′r be the value of ȳr at the end of this iteration if a(p,i)

r > 0, and y′′r :=∞ otherwise.
Then y′ ≤ y(p,i) ≤ y′′.

Proof. To show y′ ≤ y(p,i), let r ∈ R be a resource for which Hα(r) was called in line 1 in
iteration i of phase p, and l the read operation on αr performed by such a call, sampling the
value x ∈ R+ with eεx = y′r. If there is no such resource, we are done. Otherwise assume that
y′r > y

(p,i)
r . By the monotonicity of the exponential function, there is a write operation w with

w �mem rf (l) performed in an iteration j ∈ J (p) of phase p with j > i. Let b′ and b denote
the memory barrier operations performed in line 3 of iteration i and in line 5 of iteration j,
respectively. Let further w′ be the write operation that changes the value of n to j in phase p,
and l′ the read operation on n when incrementing it to i. Since i < j, we have rf (l′) ≺mem w′.
Since w′ ≺exec b ≺exec w and l ≺exec b

′ ≺exec l
′, we must have rf (l) ≺mem w by Definition 14,

which is a contradiction.
To show y(p,i) ≤ y′′, let c ∈ C be the customer processed in iteration i of phase p, and r ∈ R

with a(p,i)
r > 0. If there is no such resource, we are done. Otherwise let l be the read operation

performed by Hα on αr in line 8, and l′ the read operation performed by Hα′ on α′r in line 6,
sampling values x and x′, respectively. Let j ∈ J (p) with j < i and a(p,j)

r > 0. If there is no such
j, we are done. Otherwise, let w′+ the write operation on α′r in line 2, w′− the write operation
on α′r in the last line, and w the write operation on αr in iteration j. Similar to above, by
Definition 14 and the barrier operations in lines 3 and 5, we can deduce w′+ �mem rf (l′). If
w′− �mem rf (l′), we also have w �mem rf (l) because of the barrier operations in line 7 and after
the update of α. Hence we have x+ x′ ≥ α(p,i)

r , and the claim follows. 2

By Lemma 15, in each successful iteration i ∈ J (p) (1 ≤ p ≤ t) we have

(y(p,i))>a(p,i) ≤ (y′′)>a(p,i) ≤ τz ≤ στoptc(y
′) ≤ στoptc(y

(p,i)) ≤ στoptc(y
(p)).

As a corollary, Lemma 4 and thus Theorem 8 also hold for the Parallel Resource Sharing
Algorithm (note that the worst-case bound for the number of oracle calls does not increase
by more than a constant factor). In practice, very good speedup values can be obtained by
this parallelization approach, as is shown in Section 10. We also combined it with the reuse of
solutions from earlier iterations discussed above.

7 The Young-Khandekar Algorithm

In this section we review an algorithm for min-max resource sharing that is essentially due
to Young and Khandekar. Young [23] gave an algorithm for the mixed packing and covering
problem using exact oracles. It was later extended to min-max resource sharing with strong
oracles and some generalizations of it by Khandekar [13]. Unfortunately, Khandekar’s analysis
has two flaws (as pointed out in the appendix). Young and Khandekar applied Fleischer’s [5]
round-robin technique which exploits the fact that the global approximation guarantee is not
affected if the block solutions are just “slightly” approximately optimal. Now if we always had
to choose a customer whose block solution has minimum cost among all customers, then we

11

can avoid calling every customer’s oracle and instead stay with a customer as long as its block
solutions are close enough to this minimum. In our case the minimum grows monotonically and
we cannot know its value in advance so we maintain a lower bound to compare with. This leads
to a phase-based mechanism where the customers are processed cyclically and the lower bound
is raised from phase to phase. One of the errors in Khandekar’s work was an inaccurate rise of
the lower bound when using approximate oracles.

The following algorithm is closer to Young’s original one and works also with weak block
solvers. It requires as additional input a target value λ ∈ R+ and the approximation guarantee
σ of the block solvers.

Young-Khandekar Algorithm
Input: An instance of the Min-Max Resource Sharing Problem, i.e. finite sets R

and C, and for each c ∈ C an oracle function fc : RR+ → Bc and a convex function
gc : Bc → RR+ . A number σ ≥ 1 with the property y>gc(fc(y)) ≤ σ optc(y) for all
c ∈ C and y ∈ RR+ . Parameters λ ∈ R+ and ε ∈ (0, 1

2].

Output: For each c ∈ C a convex combination of vectors in Bc given by
∑

b∈Bc xc,bb, or
“infeasible”.

Set yr := 1 for each r ∈ R and zc := 1 for each c ∈ C.
Set Xc := 0 and xc,b := 0 for each c ∈ C and b ∈ Bc.
Set A := C.
Set Ξ := 3

ε2
(1 + eε ln |C|+ ln |R|).

repeat
Set Φ̂ := 1

>yP
c∈A zc

.

foreach c ∈ A do
while c ∈ A and y>gc(fc(y)) ≤ (1 + ε)σλzcΦ̂ do

Set b := fc(y) and a := gc(b).
Set σ̄ := y>a

λzcΦ̂
.

Set ξ := 1
max{maxr∈R ar, σ̄λ} .

Set xc,b := xc,b + ξ and Xc := Xc + ξ.
Set zc := zc · e−εξσ̄λ.
Set yr := yr · eεξar for each r ∈ R.
if zc ≤ e−εΞ then set A := A\{c}.

if A 6= ∅ and 1
>yP
c∈A zc

≤ (1 + ε)Φ̂ then stop, return “infeasible”.

until A = ∅.
Set xc,b := 1

Xc
xc,b for each c ∈ C and b ∈ Bc.

We call the iterations of the outer loop phases and the iterations of the innermost loop steps.
In the following we will again use the variables with a superscript in parentheses to indicate
their value at a special time. Here (p, c, s) means the end of the sth step of customer c within
the pth phase, and (p) means the end of the pth phase. Furthermore we denote the number of
steps for customer c in the pth phase with s

(p)
c .

Lemma 16. If the algorithm returns “infeasible”, then λ∗ > λ.

12

Proof. At the end of a phase we have y>gc(fc(y)) > (1 + ε)σλzcΦ̂ for each c ∈ A. As the
oracles are σ-approximate we also have σoptc(y) ≥ y>gc(fc(y)) and hence

optc(y) > (1 + ε)λzcΦ̂ (∀c ∈ A).

The algorithm returns “infeasible” only if (1 + ε)Φ̂ ≥ 1
>yP
c∈A zc

. With Lemma 1 this implies

λ∗ ≥
∑
c∈C

optc(y)
1>y

≥
∑
c∈A

optc(y)
1>y

>
∑
c∈A

(1 + ε)λzcΦ̂
1>y

≥
∑
c∈A

λzc∑
c∈A zc

= λ.

2

Lemma 17. In every phase p we have

ln

(
1
>y(p)

1>y(p−1)

)
≤ eε · ln

(∑
c∈A(p−1) z

(p−1)
c∑

c∈A(p−1) z
(p)
c

)
.

Proof. First we bound the growth of the prices in a step. By the definition of ξ we can apply
the two inequalities eεx ≤ 1 + (eε − 1)x and x ≤ 1

1−e−ε (1− e
−εx) for 0 ≤ x ≤ 1 in the following.

1
>y(p,c,s) =

∑
r∈R

y(p,c,s−1)
r · eεξ(p,c,s)(a(p,c,s))r

≤
∑
r∈R

y(p,c,s−1)
r

(
1 + (eε − 1)ξ(p,c,s)(a(p,c,s))r

)
= 1

>y(p,c,s−1) + (eε − 1)ξ(p,c,s)y(p,c,s−1)>a(p,c,s)

= 1
>y(p,c,s−1) + (eε − 1)ξ(p,c,s)σ̄(p,c,s)λz(p,s−1)

c Φ̂(p−1)

≤ 1
>y(p,c,s−1) +

eε − 1
1− e−ε

(1− e−εξ(p,c,s)σ̄(p,c,s)λ)z(p,s−1)
c Φ̂(p−1)

= 1
>y(p,c,s−1) + eε(z(p,s−1)

c − z(p,s)
c)Φ̂(p−1).

Next we add all steps of the while-loop for a customer c. Let c− denote the previous
customer.

1
>y(p,c) ≤ 1

>y(p,c−) +
s
(p)
c∑
s=1

eε(z(p,s−1)
c − z(p,s)

c)Φ̂(p−1)

= 1
>y(p,c−) + eεΦ̂(p−1)(z(p−1)

c − z(p)
c).

We can now bound the total growth within a phase:

1
>y(p) ≤ 1

>y(p−1) + eεΦ̂(p−1)
∑

c∈A(p−1)

(z(p−1)
c − z(p)

c)

= 1
>y(p−1) + eε1>y(p−1)

∑
c∈A(p−1)(z(p−1)

c − z(p)
c)∑

c∈A(p−1) z
(p−1)
c

.

Finally, by applying lnx ≤ x− 1 on y and 1− x ≤ ln 1
x on z we get

ln

(
1
>y(p)

1>y(p−1)

)
≤ 1

>y(p) − 1
>y(p−1)

1>y(p−1)
≤ eε · ln

(∑
c∈A(p−1) z

(p−1)
c∑

c∈A(p−1) z
(p)
c

)
.

2

13

Theorem 18. If the algorithm returns bc =
∑

b∈Bc xc,bb (c ∈ C), then

max
r∈R

∑
c∈C

(gc(bc))r ≤ (1 + 4ε)σλ.

Moreover 1
>y(t) ≤ e2εΞ, where t is the number of phases.

Proof. Using Lemma 17, A(p−1) ⊇ A(p), and∑
c∈A(t−1)

z(t)
c ≥ max

c∈A(t−1)
z(t)
c ≥ max

c∈A(t−1)
z(t−1)
c e−ε ≥ e−ε(Ξ+1)

we get

ln

(
1
>y(t)

|R|

)
= ln

(
1
>y(t)

1>y(0)

)
=

t∑
p=1

ln

(
1
>y(p)

1>y(p−1)

)
≤ eε

t∑
p=1

ln

(∑
c∈A(p−1) z

(p−1)
c∑

c∈A(p−1) z
(p)
c

)

≤ eε
t−1∑
p=1

ln

(∑
c∈A(p−1) z

(p−1)
c∑

c∈A(p) z
(p)
c

)
+ eε · ln

(∑
c∈A(t−1) z

(t−1)
c∑

c∈A(t−1) z
(t)
c

)

= eε ln

(∑
c∈A(0) z

(0)
c∑

c∈A(t−1) z
(t)
c

)
≤ eε ln

(
|C|eε(Ξ+1)

)
.

The algorithm ends when zc ≤ e−εΞ for all c ∈ C, i.e. when minc∈C
∑t

p=1

∑s
(p)
c
s=1 ξ

(p,c,s)σ̄(p,c,s)λ ≥
Ξ. Furthermore, σ̄(p,c,s) ≤ (1 + ε)σ by definition, and eεε < 1 and (ε3 + eε)(1 + ε) < 1 + 4ε for
0 < ε ≤ 1

2 . We obtain:

ln(1>y(t)) ≤ eε ln |C|+ ln |R|+ eεε(Ξ + 1) ≤ eε ln |C|+ ln |R|+ 1 + eεεΞ = ε(ε3 + eε)Ξ

≤ ε(ε3 + eε) min
c∈C

t∑
p=1

s
(p)
c∑
s=1

ξ(p,c,s)σ̄(p,c,s)λ ≤ ε(ε3 + eε)(1 + ε)σλmin
c∈C

t∑
p=1

s
(p)
c∑
s=1

ξ(p,c,s)

≤ ε(1 + 4ε)σλmin
c∈C

X(t)
c .

Note that as (ε3 + eε) ≤ 2 for 0 < ε ≤ 1
2 the above calculation also shows 1

>y(t) ≤ e2εΞ.
Combining the convexity of the resource consumption functions gc with the above inequality
we obtain the global approximation guarantee

max
r∈R

∑
c∈C

(
gc

(∑
b∈Bc

xc,bb
))

r
≤ max

r∈R

∑
c∈C

∑
b∈Bc

xc,b(gc(b))r

= max
r∈R

∑
c∈C

∑t
p=1

∑s
(p)
c
s=1 ξ

(p,c,s)(a(p,c,s))r

X
(t)
c

≤
maxr∈R

∑t
p=1

∑
c∈C
∑s

(p)
c
s=1 ξ

(p,c,s)(a(p,c,s))r

minc∈C X
(t)
c

=
maxr∈R 1

ε ln y(t)
r

minc∈C X
(t)
c

≤
1
ε ln(1>y(t))

minc∈C X
(t)
c

≤ (1 + 4ε)σλ.

2

14

Theorem 19. The algorithm needs O((|C|+ |R|) log(|C|+ |R|)ε−2) oracle calls.

Proof. To analyze the number of oracle calls we split them into successful calls, i.e. those
that lead to an iteration of the while-loop, and unsuccessful calls.

For every successful call we know by the definition of ξ that at least one of the resource
prices yr grows by a factor of eε or the variable zc shrinks by a factor of eε. From Theorem 18
we have 1 ≤ yr ≤ 1

>y ≤ e2εΞ for each resource r. Hence the first can happen at most
2|R|Ξ = O(|R|(log |C| + log |R|)ε−2) times. As e−ε(Ξ+1) ≤ zc ≤ 1 for every customer c the
second can happen at most |C|(Ξ + 1) = O(|C|(log |C| + log |R|)ε−2) times. This means that
there are O((|C|+ |R|) log(|C|+ |R|)ε−2) successful oracle calls.

Whenever a call is unsuccessful we go on to the next customer in A so these are at most |C|
times the number of phases. In every phase the term 1

>yP
c∈A zc

grows by at least a factor of 1 + ε

and we know |R|
|C| ≤

1
>yP
c∈A zc

≤ e2εΞ

e−εΞ
= e3εΞ. Hence there are O(log1+ε(|C|e3εΞ)) = O(log |C|+εΞ

ε) =

O(log(|C|+ |R|)ε−2) phases and O(|C| log(|C|+ |R|)ε−2) unsuccessful oracle calls. 2

Note that the algorithm solves an approximate feasibility version of the Min-Max Re-
source Sharing Problem. Using binary search as described by Young [23] we can use the
above algorithm to solve the optimization problem approximately. Again we start with the
initial bounds on λ∗ provided by Lemma 2 that differ by a multiplicative factor of |R|σ. A
series of O(log log |R|) calls to the Young-Khandekar Algorithm with ε = 1

4 suffices to
reduce this factor to 2σ. Subsequently, we can further tighten these bounds by increasing the
precision in a geometric fashion. Suppose we had a lower bound L and an upper bound U with
L ≤ λ∗ ≤ U and U = σβL with β ≥ 1. Choosing the target value λ := β

1
3L and the error

parameter ε such that (1+4ε) = β
1
3 , we are able to rise the lower bound to β

1
3L (Lemma 16) or

to lower the upper bound to σβ
2
3L (Theorem 18). The new value of β becomes β

2
3 and within

O(log 1
ω) iterations we reach β ≤ 1 +ω. As the runtime of every step is proportional to ε−2 and

ε decreases geometrically, the runtime is dominated by the very last iteration. This leads to the
following:

Theorem 20. Given an instance of the Min-Max Resource Sharing Problem with σ-
optimal block solvers for some given σ ≥ 1. Then a σ(1 + ω)-approximate solution can be
computed in O(θ(|C|+ |R|) log(|C|+ |R|)(log log |R|+ ω−2)) time. 2

This is the same bound claimed by Khandekar [13] and only slightly worse than Theorem 8.

8 Application: Global Routing in Chip Design

The Min-Max Resource Sharing Problem has many applications (e.g. [6, 7, 12]). Our
practical work was motivated by global routing in chip design. Here we are given an undirected
graph G with edge capacities u : E(G) → R+ \ {0} and a finite set N of nets. For each net
n ∈ N , we are given a set Dn of nonempty subsets of V (G), called pins. Let Tn be a set of
Steiner forests for Dn in G, i.e., forests T in G with

⋃
Dn ⊆ V (T) for which contracting each

pin results in a tree. In our application, Tn is the set of all Steiner forests for Dn in a given
subgraph of G (which depends on n).

Furthermore, we have wire widths w : N × E(G)→ R+ \ {0}, including the minimum spac-
ing required to neighbouring wires. For the practically relevant objectives, power consumption

15

and manufacturing yield loss, the cost of using an edge e ∈ E(G) for net n ∈ N can be re-
duced by allocating extra space in addition to the minimally required value w(n, e). We model
these spacing-dependent costs by functions γn,e : R+ → R+ for each n ∈ N and e ∈ E(G). Here
γn,e(s) is the estimated contribution to the objective function if e is used by net n with allocated
space w(n, e) + s. Both for power and yield optimization, the functions γn,e are convex (they
are roughly s 7→ c1 + c2

s for constants c1, c2 > 0). See [14] and [21] for details.
For wiring length minimization, the traditional objective function in global routing, the

functions γn,e are simply constant. This special case was considered previously by Carden, Li
and Cheng [3], and by Albrecht [1].

The task is to find a Steiner forest Tn ∈ Tn and an extra space assignment sn : E(Tn)→ R+

for each n ∈ N such that
∑

n∈N :e∈E(Tn)(w(n, e)+sn(e)) ≤ u(e) for each e ∈ E(G), and the total
cost ∑

n∈N

∑
e∈E(Tn)

γn,e(sn(e)) (6)

is (approximately) minimized.
We replace the objective function by a constraint, imposing an upper bound Γ on the total

cost (we can apply binary search to find the optimum value of Γ approximately). However,
even deciding whether there exists a feasible solution is NP-complete since it contains the edge-
disjoint paths problem. Therefore we first consider a fractional relaxation. Let χ(T) ∈ {0, 1}E(G)

denote the edge-incidence vector of a Steiner forest T . Instead of an element of

Bint
n := {(χ(T), s) | T ∈ Tn, s ∈ RE(G)

+ , se = 0 for e /∈ E(T)}

we look for an element of Bn := conv
(
Bint
n

)
for each n ∈ N . We obtain an instance of the Min-

Max Resource Sharing Problem by setting C := N , R := E(G)
.
∪ {O}, where O is an

extra resource representing the objective function, and defining resource consumption functions
gc : Bc → RR+ by

(gc(x, s))e := (xew(c, e) + se)/u(e) (e ∈ E(G))
(gc(x, s))O :=

(∑
e∈E(G):xe>0 xeγc,e(se/xe)

)
/Γ (7)

for each c ∈ C and (x, s) ∈ Bc.
We now show how to implement the block solvers. First we prove that the structure of these

resource consumption functions allows to optimize over Bint
c instead of Bc for each c ∈ C:

Lemma 21. Let c ∈ C and y ∈ RR+ . Then infb∈Bint
c
y>gc(b) = infb∈Bc y

>gc(b).

Proof. Let b∗ = (x∗, s∗) ∈ Bc. We have b∗ =
∑k

j=1 µjb
j for some b1 = (x1, s1), . . . , bk =

(xk, sk) ∈ Bint
c , µ1, . . . , µk > 0 with

∑k
j=1 µj = 1, and k ∈ N.

For 1 ≤ j ≤ k, let b̄j := (x̄j , s̄j) ∈ Bint
c with x̄je := xje for each e ∈ E(G) and

s̄je :=
{
xjes∗e/x

∗
e : x∗e > 0

0 : x∗e = 0
.

Then b∗ =
∑k

j=1 µj b̄
j . Using the fact that b 7→ (gc(b))r as defined in (7) is linear for all

r ∈ R \ {O}, and s̄je/x̄
j
e = s∗e/x

∗
e for 1 ≤ j ≤ k and e ∈ E(G) with x̄je > 0, we get

16

y>gc(b∗) =
∑

e∈E(G)

ye

gc
 k∑
j=1

µj b̄
j

e

+
yO
Γ

 ∑
e∈E(G):x∗e>0

x∗eγc,e(s
∗
e/x
∗
e)
)

=
∑

e∈E(G)

ye

k∑
j=1

µj(gc(b̄j))e +
yO
Γ

 k∑
j=1

µj
∑

e∈E(G):xje>0

xjeγc,e(s̄
j
e/x

j
e)
)

=
k∑
j=1

µjy
>gc(b̄j) ≥

k∑
j=1

µj inf
b∈Bint

c

y>gc(b) = inf
b∈Bint

c

y>gc(b).

2

Finding a b∗ ∈ Bint
c for c ∈ C with y>gc(b∗) ≤ σ infb∈Bint

c
y>gc(b) is equivalent to finding a

T ∗ ∈ Tc with ȳ>χ(T ∗) ≤ σminT∈Tc ȳ>χ(T), where ȳ := (ȳe)e∈E(G) is defined by

ȳe := inf
s≥0

(
ye
w(c, e) + s

u(e)
+ yO

γc,e(s)
Γ

)
(8)

for e ∈ E(G). Therefore, after adding zero cost edges connecting each pair of vertices belonging
to the same pin, an approximation algorithm for the Steiner tree problem in weighted graphs
can be used to implement the oracle function fc.

We can also model timing constraints by defining additional resources similar to O, but
involving only a subset of nets each: the delay along a path (sequence of nets) is roughly
proportional to the weighted sum of electrical capacitances of the involved nets (see [21]).
However, we have not yet implemented this.

Randomized Rounding. By solving the above-defined instance of the Min-Max Resource
Sharing Problem we obtain for each c ∈ C an element of Bc, more precisely a convex combi-
nation

∑
b∈Bint

c
xc,bb of the elements of Bint

c returned by the block solver fc. Since we eventually
need an element of Bint

c for each c ∈ C, it is natural to apply randomized rounding, choosing
each b ∈ Bint

c with probability xc,b, for each c ∈ C independently. This actually works very well
in our application. One reason is that both presented algorithms compute a solution x for which
not only maxr∈R

∑
c∈C(gc(

∑
b∈Bc xc,b(b))r, but even maxr∈R

∑
c∈C
∑

b∈Bc xc,b(gc(b))r is bounded
by σ(1 + ω)λ∗ (cf. the proofs of Lemma 3 and Theorem 18). Therefore the following theorem
bounds the increase of the maximum resource utilization. This strengthens a well-known result
of Raghavan and Thompson [18].

Theorem 22. Let C and Bc (c ∈ C) be finite sets and xc,b ≥ 0 for all c ∈ C and b ∈ Bc
with

∑
b∈Bc xc,b = 1 for all c ∈ C. Let gc(b) ∈ RR+ for b ∈ Bc and c ∈ C, and λ :=

maxr∈R
∑

c∈C
∑

b∈Bc xc,b(gc(b))r.
Consider a “randomly rounded” solution, b̂c ∈ Bc for c ∈ C, given as follows. Independently

for all c ∈ C we choose b ∈ Bc as b̂c with probability xc,b. Let λ̂ := maxr∈R
∑

c∈C(gc(b̂c))r.
For r ∈ R let ρr := max{(gc(b))r/λ : b ∈ Bc, c ∈ C, xc,b > 0}, and let δ > 0. Then

λ̂ ≤ λ(1 + δ) with probability at least 1−
∑

r∈R e
−h(δ)/ρr , where h(δ) := (1 + δ) ln(1 + δ)− δ.

Proof. Consider any resource r ∈ R. Note that (gc(b̂c))r
ρrλ

, c ∈ C, are independent random
variables in [0, 1]. The sum of the expectations of these |C| random variables is at most 1

ρr
.

17

Hence, by a lemma due to Raghavan and Spencer (a variant of Chernoff’s bound, see Ragha-

van [17]), their sum is greater than 1+δ
ρr

with probability less than e
−h(δ)

ρr . This implies that∑
c∈C(gc(b̂c))r > ρrλ · 1+δ

ρr
= (1 + δ)λ with probability less than e−

h(δ)
ρr . By summing the failure

probabilities of all resources we obtain the theorem. 2

Since ρr is small for most resources in our application, δ can be chosen quite small to
have positive success probability. In practice, only few violations occur, i.e.

∑
c∈C(gc(b̂c))r > 1

only for a small number of resources r ∈ R, and these violations can be eliminated easily by
postprocessing (“ripup and reroute”). We do not discuss details here since this paper focuses
on the Min-Max Resource Sharing Problem.

9 Implementation Aspects

We discuss in this section some key aspects of our implementation of the (Parallel) Resource
Sharing Algorithm which are important for obtaining good running times in practice, and
which are needed to understand the experimental results in Section 10.

The graph. We exploit the special structure of global routing graphs. We have a three-
dimensional grid with alternating preference directions in the layers and no edges orthogonal to
the preference direction. More precisely, the vertex set is {0, . . . , nx}×{0, . . . , ny}×{0, . . . , nz},
and a vertex pair {(x, y, z), (x′, y′, z′)} is an edge if and only if |x− x′|+ |y − y′|+ |z − z′| = 1
and (x = x′ ∨ z 6≡ i (mod 2)) and (y = y′ ∨ z ≡ i (mod 2)). Here i ∈ {0, 1} determines the
preference directions of the layers.

Such a graph, and any vertex labels and edge costs, can obviously be stored very efficiently.
Adjacency lists are not needed at all.

The oracle. By Lemma 21 and the subsequent remark, the block solvers can be implemented
by an (approximation) algorithm for the Steiner tree problem in weighted graphs. Given a
connected undirected graph G with edge costs c : E(G) → R+ and a terminal set D ⊆ V (G),
we look for a Steiner tree for D in G, i.e. a tree T in G with D ⊆ V (T), whose cost c(T) :=∑

e∈E(T) c(e) is to be (approximately) minimized. An approximation ratio of 2 is guaranteed
by the well-known Path Decomposition Steiner Tree Algorithm:

Path Decomposition Steiner Tree Algorithm
Input: A connected undirected graph G with edge costs c : E(G)→ R+, and a terminal

set D ⊆ V (G) with |D| ≥ 2.

Output: A Steiner tree T for D in G whose cost c(T) is at most twice the optimum.

Set K := D and F := ∅.
while (K,F) has more than one connected component do

Pick a connected component C of (K,F).
Find a path P of minimum cost c(P) from V (C) to K \ V (C) in G.
Set K := K ∪ V (P) and F := F ∪ E(P).

return T := (K,F).

Let (Ḡ[D], c̄) denote the subgraph of the metric closure of (G, c) induced by D, and let
M be a minimum spanning tree in (Ḡ[D], c̄). The Path Decomposition Steiner Tree

18

Algorithm can achieve much shorter cost than c̄(M) by connecting to interior vertices of
previously computed paths. For guaranteeing an approximation ratio of 2 we show the folklore
result that c̄(M) is never exceeded:

Lemma 23. The Path Decomposition Steiner Tree Algorithm returns a Steiner tree
T for D in G with c(T) ≤ c̄(M).

Proof. Let (Ki, Fi) be the forest (K,F) at the end of the i-th iteration. We show by induction
that there is a set Mi ⊆ E(M) such that Ti := (Ki, Fi∪Mi) is a tree and c(Fi)+ c̄(Mi) ≤ c̄(M).
This is certainly true for i = 0, i.e. after initialization. Now let i ≥ 1, Pi the path computed
in iteration i, P ′i the path connecting the endpoints of Pi in Ti−1, and e an edge in P ′i that
leaves the connected component C selected in iteration i. Because e ∈ E(Mi−1) and Pi is a
shortest path from C to any other connected component, we have c̄(e) ≥ c(Pi), hence setting
Mi := Mi−1 \ {e} we get c(Fi) + c̄(Mi) = c(Fi−1) + c(Pi) + c̄(Mi−1)− c̄(e) ≤ c(Fi−1) + c̄(Mi−1).

2

This actually proves an approximation ratio of 2− 2/|D|. The main subroutine of the Path
Decomposition Steiner Tree Algorithm is Dijkstra’s shortest path algorithm, which we
implemented with various well-known speed-up techniques.

Lower bounds. As described in Section 5, we use lower bounds lc ∈ RR+ to decide if we
can reuse the last solution found for customer c ∈ C. Because for practically all nets there
is a Steiner forest not using a particular given edge, we set (lc)r := 0 for r ∈ R \ {O}, and
(lc)O := (gc(fc(0, . . . , 0, 1)))O/2, as σ = 2 with our implementation of the oracle.

Dynamic adaptation of Γ. Instead of narrowing down the bound Γ on (6) by binary search
(thus running the Parallel Resource Sharing Algorithm several times), it turns out that
one obtains very good solutions also by starting with a fairly large value of Γ and dynamically
reducing it from phase to phase of the algorithm if the congestion in the extra resource O that
models the objective function is not too large.

We first compute a lower bound Γest on σΓ∗, where Γ∗ is the minimum of (6). To this end,
we define gc as in Section 8 for c ∈ C with Γ = 1, compute xc := gc(fc(y)) with yO := 1 and
ye := 0 for e ∈ E(G), and set

Γest :=
∑
c∈C

xcO.

We then start the Parallel Resource Sharing Algorithm with Γ := kΓest, where
k > 1 depends on the optimization objective. For wiring length, k := 1.1 suffices in practice to
obtain a feasible solution, while for power or yield optimization larger values are necessary. If
λ

(p)
O falls below a threshold λthr at the end of a phase p, we reduce Γ by a factor

βλthr + (1− β)λ(p)
O

λ
(p)
O

with 0 ≤ β ≤ 1. This is equivalent to scaling gc for each c ∈ C. In practice we set β := ε
10

and λthr := 0.95. The experimental data presented in Section 10 show that this approach yields
very good results.

19

Weighting of resource prices. Typically, on large global routing instances with millions of
nets, the relative contribution

γc,e(s)
Γ

to the objective value by using edge e ∈ E(G) in a Steiner forest T ∈ Tc for customer c ∈ C
is below 10−8 for all spacing values s ∈ R+, while w(c,e)+s

u(e) ≥ 10−2. Although resource prices

grow exponentially, for reasonable values of ε the contribution of yO
γc,e(s)

Γ to (8) is negligible
in the first phases of the Resource Sharing Algorithm. Hence, the algorithm spreads the
wiring very far across the chip area in the first phases, at the cost of increased wiring length.
In later phases, when yO has increased sufficiently, many nets are rerouted with shorter wiring
length. We observed considerably faster convergence towards an optimum solution in practice
by duplicating the resource O modeling the objective function dφe times, where φ is chosen such
that

φ
∑
c∈C

∑
e∈E(G)

γc,e(0)
Γ

=
∑
c∈C

∑
e∈E(G)

w(c, e)
max{u(e), w(c, e)}

,

Typically, φ < |R|, hence the worst-case runtime increases only by a small factor. The practical
benefit however outweighs this by far.

Zero capacity edges. The graphs in our global routing instances have a regular grid-like
structure which can be represented very memory-efficiently. In order to avoid using adjacency
lists, we do not delete edges e ∈ E(G) with capacity u(e) = 0.

On some global routing instances, however, there are nets which can be routed only by using
one or more edges with zero capacity. Although from a theoretical standpoint, such an instance
is infeasible, this often is caused by inaccuracies in the computation of the edge capacities.
Hence, in order to generate a reasonable solution for such instances, we do not count zero
capacity edges as resources, but require the oracle to return a Steiner forest using a minimum
number of zero capacity edges.

Numerical precision. If numbers are not represented symbolically, but explicitly by list-
ing their (binary) digits, precision of calculations is of course limited. While there are soft-
ware packages for calculating with arbitrary precision (only limited by memory space), using
hardware operations on floating point numbers as defined in the IEEE 754 standard [10] is
much faster. Our implementation uses 64-bit double-precision IEEE-754 floating point num-
bers, which are supported in hardware on all current microprocessors. Switching from double-
precision to extended-precision numbers (with 80 bits instead of 64), also directly supported in
hardware, already causes a significant runtime penalty, but offers almost no benefit in practice.

With double-precision IEEE-754 floating point numbers a, b ∈ Q+ \ {0}, the condition that

a+ b > max{a, b} (9)

holds only if max{a, b}/min{a, b} < 252, as the mantissa of double-precision numbers encom-
passes 52 bits (11 bits are used for the exponent, and one bit for the sign). Ensuring this
condition is important because otherwise resources can be used at an effective cost of zero,
causing unnecessary routing detours.

Although resources are introduced only for edges with positive capacity, the oracle operates
directly on the global routing graph G. Because we want to minimize the number of zero

20

capacity edges used, we have to impose costs on zero capacity edges which are greater than the
sum of costs for using edges with positive capacity. Further, the oracle has to increment total
costs a of partial routings for a net by costs b for adding an edge, so

(1− ξ)|E(G)|max{1, (ξ|E(G)| − 1)x} < 252

is necessary and sufficient to guarantee (9) if ξ > 0 is the fraction of edges with positive capacity,
and x is the cost ratio between the most expensive and the cheapest among them.

The amount consumed of the corresponding resources differs by a factor of at most

k1 := max
e1,e2∈E+

w(c, e1)u(e2)
w(c, e2)u(e1)

,

for a customer c ∈ C, where E+ := {e ∈ E(G) : u(e) > 0}, so we can guarantee (9) if

maxr∈R\{O} eεαr

minr∈R\{O} eεαr
<

252

1
4 |E(G)|2k1

(10)

and

k2 := max
e1,e2∈E+,s1,s2∈R+

γc,e1(s1)
γc,e2(s2)

<
252

1
4 |E(G)|2

. (11)

Usually (10) implies (11) because k2 ≤ k1. However, we cannot ensure (10) on the largest of
today’s global routing instances because the right-hand side is too small (it is approximately 1).
In practice however it suffices to ensure that costs for using an edge with zero capacity are 100
times higher than the highest cost for using an edge with positive capacity; we observed only
few exceptions in which this did not minimize the number of zero capacity edges in a shortest
path to be found in a call to the block solver. Moreover, not more than ten zero capacity edges
are usually needed per path (in most cases only for accessing “blocked” pins). Therefore it is
relatively safe in practice to replace the factor |E(G)|2 in (10) by 210, providing a ratio of 244/k1

between maximum and minimum edge congestion costs. We can assume k1 ≤ 128 = 27 and
replace the costs eεαr for r ∈ R \ {O} by

eεmax{min{αr,pλpmax},pλpmin} (12)

in phase p of the Resource Sharing Algorithm, with λpmin = λpmax − ln 237

εp . For example,
with ε = 1, the interval [λpmin, λ

p
max] can be set to [0, 25.6] in the first phase, [0.744, 1.256] in

the 50-th phase and [0.872, 1.128] in the 100-th phase of the Resource Sharing Algorithm.
This suffices in practice because routable chips typically have λ∗ ∈ [0.9, 1], and on unroutable
chips the value of λ∗ is not of high interest if λ∗ > 1.1.

As expected, if the maximum congestion exceeds λpmax at some time during phase p of
the algorithm (1 ≤ p ≤ t), it often increases significantly from that point. Bounding edge
resource costs from below by eεpλ

p
min in (12) with λpmin < λ∗ does not cause significantly different

behaviour of the algorithm.

10 Experimental Results

In this section we show experimental results of the Parallel Resource Sharing Algorithm
on global routing instances which originate from recent industrial chips. We also compare the
two algorithms that we presented.

21

Chip ε phases λO λedges λdual obj. / Γest running speedup
ratio time

Nouzada 0.100 1250 0.9499 0.9652 0.9488 1.014 0:04:48
|C| = 126 365 0.250 500 0.9499 0.9653 0.9485 1.014 0:01:50
|R| = 76 543 1.000 125 0.9499 0.9680 0.9419 1.018 0:00:19 4.34
Christopher 0.100 1250 0.9499 0.9630 0.9486 1.021 0:04:55
|C| = 96 883 0.250 500 0.9499 0.9630 0.9480 1.021 0:01:54
|R| = 97 124 1.000 125 0.9499 0.9640 0.9438 1.023 0:00:20 5.48
Omnea 0.100 1250 0.9498 0.9630 0.9478 1.023 0:11:02
|C| = 221 795 0.250 500 0.9498 0.9626 0.9479 1.024 0:04:21
|R| = 70 227 1.000 125 0.9499 0.9611 0.9434 1.025 0:00:52 6.18
Estelle 0.100 1250 0.9499 0.9620 0.9474 1.041 0:19:28
|C| = 371 733 0.250 500 0.9498 0.9618 0.9478 1.041 0:07:43
|R| = 168 651 1.000 125 0.9499 0.9605 0.9435 1.043 0:01:42 6.42
Gerhard 0.100 1250 0.9499 0.9569 0.9488 1.022 0:15:59
|C| = 347 552 0.250 500 0.9499 0.9562 0.9486 1.022 0:06:04
|R| = 591 579 1.000 125 0.9499 0.9546 0.9438 1.024 0:01:08 6.04
Etienne 0.100 1250 0.9608 1.0000 0.9569 1.055 0:35:34
|C| = 313 718 0.250 500 0.9612 1.0000 0.9563 1.055 0:14:17
|R| = 244 431 1.000 125 0.9624 1.0000 0.9505 1.058 0:03:16 6.78
Henrik 0.100 1250 0.9499 0.9740 0.9488 1.011 0:23:23
|C| = 440 915 0.250 500 0.9499 0.9734 0.9484 1.011 0:08:58
|R| = 2 480 869 1.000 125 0.9499 0.9722 0.9449 1.014 0:01:47 6.42
Emilia 0.100 1250 0.9499 0.9640 0.9500 1.006 0:29:59
|C| = 430 273 0.250 500 0.9499 0.9640 0.9494 1.006 0:11:07
|R| = 7 947 102 1.000 125 0.9500 0.9632 0.9435 1.011 0:01:47 5.41
Milena 0.100 1250 0.9499 0.9742 0.9482 1.034 1:12:08
|C| = 1 312 592 0.250 500 0.9499 0.9742 0.9481 1.034 0:28:03
|R| = 1 659 036 1.000 125 0.9499 0.9717 0.9431 1.037 0:06:05 6.91
Simona 0.100 1250 0.9500 1.0490 0.9848 1.031 1:28:00
|C| = 1 406 678 0.250 500 0.9500 1.0500 0.9849 1.031 0:34:18
|R| = 1 003 448 1.000 125 0.9500 1.0519 1.0117 1.034 0:06:54 6.19
Guido 0.100 1250 0.9499 0.9646 0.9491 1.017 1:26:04
|C| = 1 796 234 0.250 500 0.9499 0.9642 0.9488 1.017 0:33:43
|R| = 2 469 158 1.000 125 0.9499 0.9644 0.9446 1.020 0:06:17 6.49
Dirk 0.100 1250 0.9815 3.1982 1.0800 1.069 2:44:40
|C| = 1 600 898 0.250 500 0.9838 3.3178 1.0672 1.073 1:05:05
|R| = 3 316 786 1.000 125 0.9922 3.7036 1.0127 1.087 0:14:44 6.91
Thilo 0.100 1250 0.9500 0.9790 0.9476 1.042 4:12:09
|C| = 2 772 390 0.250 500 0.9500 0.9790 0.9471 1.042 1:40:18
|R| = 2 234 909 1.000 125 0.9504 0.9791 0.9403 1.045 0:23:18 7.05
Martina 0.100 1250 0.9499 0.9790 0.9488 1.026 4:23:05
|C| = 3 783 704 0.250 500 0.9499 0.9791 0.9482 1.026 1:45:10
|R| = 4 207 761 1.000 125 0.9499 0.9790 0.9433 1.029 0:20:14 6.87

Table 2: Comparison of different choices for ε, optimizing wiring length. All runs used 8 threads
in parallel.

Table 2 shows results for wiring length minimization with different choices of ε and t. In
our instances we always have λ∗ > 1

2 , and on instances with λ∗ > 1 we are interested only in
a certificate of infeasibility. Hence we do not perform scaling as in Theorems 8, 9, and 10, but
just run the core algorithm. Moreover, in these experiments we dynamically adapt the bound
Γ on the total objective value as discussed in Section 9.

We choose the number t of phases such that tε = 125, which turns out to be sufficient in
practice, and set the parameter τ for reusing previously computed solutions, and defining the
acceptance criterion in the procedure ParallelAllocateResources, to 1 + 0.05ε. We set
the initial bound Γ := 1.1Γest.

In Table 2, λedges is the value of maxr∈R\{O}
∑

c∈C
(
gc
(∑

b∈Bc xc,bb
))
r

at the end of the
Parallel Resource Sharing Algorithm. Note that in many cases λO and λedges are close

22

to 0.95. This is due to the dynamic scaling of Γ discussed in Section 9, using a threshold value
λthr := 0.95.

The value λdual is ∑
c∈C(y

(t))>gc(fc(y(t)))
(y(t))>1

.

Hence by Lemma 1 applied to y(t), λdual/σ is a lower bound on λ∗. As shown in Section 9, we
have σ = 2 for our implementation of the oracle. In practice however

σavg :=
∑

c∈C(y
(t))>gc(fc(y(t)))∑

c∈C optc(y(t))

is considerably smaller than 2, as many nets have only two pins (in this case an optimum
solution is a shortest path), and the Path Decomposition Steiner Tree Algorithm also
returns a solution within a few percent of optimum for most other instances in practice. Of
course if λdual/σavg > 1, this gives an infeasibility proof. On the other hand, if λdual > 1
but λdual/σavg ≤ 1, this gives an infeasibility proof relative to σavg/λdual, i.e. showing that by
using block solvers which return only σavg/λdual-optimal solutions, a feasible solution to the
Min-Max Resource Sharing Problem cannot be found.

We are therefore almost sure that Dirk is infeasible (although we cannot formally prove this
with our oracle). We do not know whether Simona is feasible. For all other instances we found
feasible solutions.

The column denoted “obj. / Γest” shows the ratio between the achieved wiring length and
the target value Γest. The experiments were made on a 3.33 GHz Intel Xeon machine with 144
GB of memory and used 8 processors in parallel. Running times of the Parallel Resource
Sharing Algorithm are given in hh:mm:ss. Speedup over the sequential Resource Sharing
Algorithm is shown only for ε = 1.0 because of the higher running times for smaller values
of ε. The sequential runs were not done with the Parallel Resource Sharing Algorithm
running on a single processor, but with the sequential Resource Sharing Algorithm in
order to avoid overhead that is necessary only for the parallelization.

Interestingly, choosing ε smaller and t larger does not seem to help much in practice. We
get excellent results already for ε = 1 and t = 125 within less than half an hour even for the
largest instances.

For the following experiments we considered only the twelve chips for which we found feasible
solutions. Table 3 compares results for minimizing wiring length, critical area (a measure for the
manufacturing yield loss; cf. [14]), and power consumption. All runs in this table are made with
ε := 1, and we set the initial bound Γ := 1.1 Γest for wiring length optimization, Γ := 1.5 Γest

for power optimization and Γ := 2 Γest for yield optimization. As above, the column denoted
“obj. / Γest ratio” shows the ratio between the achieved objective value and Γest. In addition,
for each chip and each objective, we determined a lower bound Γlb on the optimum objective
value Γ∗ that can be achieved with our implementation of the oracle. This was done by binary
search on Γ∗, increasing Γlb whenever for the current value infeasibility relative to σavg/λdual is
proven. In this binary search, the resource consumption functions gc for c ∈ C are not scaled
during an execution of the core algorithm.

Columns 5 to 7 evaluate the achieved result w.r.t. all three metrics and show the relative
value compared to the run actually optimizing the corresponding objective. The last column
shows the running times.

23

Chip Optimization Obj. / Γest Obj. / Γlb Relative obj. value Running
objective ratio ratio wiring critical power time

length area
Nouzada wiring length 1.0179 1.0070 1.000 1.088 1.109 0:00:19

critical area 1.0239 1.0066 1.043 1.000 1.068 0:00:40
power 1.1197 1.0257 1.169 1.197 1.000 0:01:23

Christopher wiring length 1.0235 1.0066 1.000 1.116 1.136 0:00:20
critical area 1.0278 1.0064 1.053 1.000 1.068 0:00:38

power 1.1291 1.0229 1.196 1.216 1.000 0:01:47
Omnea wiring length 1.0254 1.0079 1.000 1.044 1.068 0:00:52

critical area 1.0396 1.0092 1.023 1.000 1.045 0:01:36
power 1.2049 1.0234 1.176 1.202 1.000 0:02:34

Estelle wiring length 1.0430 1.0107 1.000 1.066 1.097 0:01:42
critical area 1.0491 1.0109 1.037 1.000 1.056 0:02:34

power 1.1795 1.0265 1.217 1.233 1.000 0:04:15
Gerhard wiring length 1.0243 1.0074 1.000 1.169 1.180 0:01:08

critical area 1.0380 1.0086 1.088 1.000 1.113 0:03:27
power 1.0929 1.0236 1.288 1.330 1.000 0:04:34

Etienne wiring length 1.0577 1.0168 1.000 1.091 1.077 0:03:16
critical area 1.1293 1.0277 1.054 1.000 1.060 0:07:08

power 1.2347 1.0363 1.201 1.239 1.000 0:07:07
Henrik wiring length 1.0138 1.0064 1.000 1.052 1.055 0:01:47

critical area 1.0268 1.0100 1.030 1.000 1.043 0:04:47
power 1.0654 1.0300 1.146 1.172 1.000 0:07:36

Emilia wiring length 1.0112 1.0061 1.000 1.779 1.115 0:01:47
critical area 1.5454 1.0540 1.305 1.000 1.460 1:54:26

power 1.0489 1.0179 1.169 1.722 1.000 0:18:06
Milena wiring length 1.0365 1.0112 1.000 1.103 1.136 0:06:05

critical area 1.0584 1.0134 1.074 1.000 1.087 0:14:10
power 1.1460 1.0298 1.285 1.301 1.000 0:18:08

Guido wiring length 1.0203 1.0072 1.000 1.138 1.115 0:06:17
critical area 1.0660 1.0149 1.071 1.000 1.100 0:26:28

power 1.1193 1.0287 1.220 1.282 1.000 0:30:39
Thilo wiring length 1.0454 1.0158 1.000 1.110 1.098 0:23:18

critical area 1.1154 1.0237 1.055 1.000 1.076 0:50:50
power 1.1937 1.0322 1.241 1.292 1.000 0:54:39

Martina wiring length 1.0288 1.0097 1.000 1.151 1.134 0:20:14
critical area 1.0775 1.0166 1.072 1.000 1.101 1:03:32

power 1.1298 1.0278 1.232 1.297 1.000 1:10:18

Table 3: Comparison of different optimization objectives. All runs were made with ε := 1 using
8 threads in parallel.

Traditional global routers just try to minimize wiring length (and are often purely heuristic,
without any performance guarantee). Table 3 shows that a global routing with almost optimum
wiring length is not very good with respect to power consumption and yield. With our algorithm,
these objectives can be optimized directly for the first time, in very reasonable running time.

In Table 4 we finally compare our Resource Sharing Algorithm with the Young-
Khandekar Algorithm as presented in Section 7. These runs were all made on a 2.93 GHz
Intel Xeon machine with 96 GB of memory and used only one processor because we did not
parallelize our implementation of the Young-Khandekar Algorithm.

In each of these experiments, we have chosen Γ slightly larger than the objective values
achieved in the above experiments, hence a feasible solution exists but is not easy to find. The
choice of Γ is shown in column 3, and ε is set to 1. Columns 4 and 5 show the results of
our Resource Sharing Algorithm running with τ := 1.05 for reusing previously computed
solutions. The Young-Khandekar Algorithm requires input parameters λ and σ. We set
λ := 1 because λ∗ is slightly smaller than 1, but as it is not clear how to set σ, we ran the

24

Chip Optimization Γ / Γest Our algorithm Y.-K. (σ = 1.05) Y.-K. (σ = 2)
objective λO λedges Running λO λedges Running λO λedges Running

time time time
Nouzada wiring length 1.02 0.9963 1.0013 0:01:39 0.9953 1.0083 0:12:40 0.9963 1.0125 0:08:25

critical area 1.03 0.9964 1.0001 0:04:43 0.9933 1.0139 0:22:37 0.9945 1.0062 0:14:45
power 1.12 0.9939 0.9968 0:11:48 0.9941 1.0114 0:27:54 0.9963 1.0133 0:18:02

Christopher wiring length 1.03 0.9920 1.0046 0:02:17 0.9927 1.0135 0:13:21 0.9936 1.0196 0:08:44
critical area 1.03 0.9985 1.0056 0:04:17 0.9966 1.0234 0:21:23 0.9980 1.0193 0:13:26

power 1.13 0.9932 0.9994 0:15:23 0.9930 1.0105 0:37:35 0.9954 1.0132 0:24:26
Omnea wiring length 1.03 0.9925 1.0030 0:06:31 0.9932 1.0130 0:28:16 0.9944 1.0121 0:18:44

critical area 1.04 0.9971 1.0055 0:13:03 0.9969 1.0164 0:42:51 0.9981 1.0196 0:28:01
power 1.21 0.9925 1.0033 0:23:42 0.9927 1.0092 0:54:15 1.0007 1.0436 0:35:25

Estelle wiring length 1.05 0.9892 0.9989 0:15:00 0.9901 1.0505 0:46:35 0.9913 1.1632 0:30:35
critical area 1.05 0.9954 1.0031 0:21:32 0.9949 1.0195 1:07:09 0.9961 1.0238 0:43:52

power 1.18 0.9941 1.0020 0:41:01 0.9934 1.0603 1:32:57 1.0012 1.0725 1:01:44
Gerhard wiring length 1.03 0.9926 0.9972 0:08:30 0.9936 1.0276 0:46:09 0.9947 1.0156 0:30:18

critical area 1.04 0.9989 0.9953 0:30:00 0.9970 1.0450 2:16:07 0.9988 1.0158 1:29:03
power 1.10 0.9887 0.9910 0:42:21 0.9874 1.0305 2:01:33 0.9894 1.0129 1:19:32

Etienne wiring length 1.06 0.9924 1.0207 0:25:57 0.9920 1.0484 1:22:07 0.9933 1.0489 0:57:17
critical area 1.13 0.9907 1.0148 1:01:45 0.9882 1.0481 2:50:50 0.9903 1.0355 2:00:23

power 1.24 0.9890 1.0270 1:06:24 0.9872 1.0365 2:36:57 0.9893 1.0443 1:48:25
Henrik wiring length 1.02 0.9920 1.0130 0:13:13 0.9969 1.1220 1:45:32 0.9936 1.0430 1:10:54

critical area 1.03 1.0059 1.0252 0:36:57 0.9947 1.0596 3:26:17 0.9977 1.0625 2:15:54
power 1.07 0.9902 1.0091 1:05:40 0.9889 1.0770 3:55:36 0.9928 1.0336 2:36:06

Emilia wiring length 1.02 0.9905 1.0032 0:11:42 0.9907 1.0599 3:55:21 0.9918 1.0399 2:32:41
critical area 1.55 0.9877 0.9939 16:01:06 0.9785 1.0866 39:14:11 0.9821 1.0301 26:34:58

power 1.05 0.9960 0.9936 2:23:26 0.9911 1.0406 12:06:07 0.9927 1.0315 7:58:53
Milena wiring length 1.04 0.9925 1.0061 0:53:10 0.9935 1.0642 3:26:55 0.9958 1.1408 2:17:00

critical area 1.06 0.9960 1.0072 2:05:35 0.9941 1.0773 8:05:04 0.9957 1.0850 5:21:30
power 1.15 0.9912 1.0036 2:50:42 0.9895 1.0729 8:25:11 0.9945 1.1029 5:28:51

Guido wiring length 1.03 0.9887 1.0009 0:50:03 0.9887 1.0808 5:13:30 0.9900 1.0249 3:53:45
critical area 1.07 0.9947 1.0013 3:58:30 0.9939 1.0647 16:15:05 0.9936 1.0176 10:38:32

power 1.12 0.9934 1.0042 4:44:44 0.9916 1.0849 14:42:42 0.9942 1.0223 9:48:18
Thilo wiring length 1.05 0.9900 1.0153 2:48:32 0.9900 1.0435 10:53:03 0.9913 1.0366 7:12:47

critical area 1.12 0.9895 1.0131 7:32:44 0.9874 1.0676 24:45:37 0.9888 1.0411 16:29:36
power 1.20 0.9880 1.0152 8:30:06 0.9862 1.0597 24:35:48 0.9883 1.0529 16:13:21

Martina wiring length 1.03 0.9954 1.0230 2:27:38 0.9954 1.0654 14:04:56 0.9963 1.0415 9:04:16
critical area 1.08 0.9949 1.0194 9:16:02 0.9920 1.0763 37:22:49 0.9939 1.0396 23:59:45

power 1.13 0.9930 1.0200 10:32:09 0.9910 1.0711 33:38:35 0.9933 1.0366 21:52:47

Table 4: Comparison of our Resource Sharing Algorithm and the presented Young-
Khandekar Algorithm with σ := 1.05 and σ := 2. All runs were performed sequentially.

algorithm for σ := 1.05 (columns 7 to 9) and σ := 2 (columns 10 to 12).
For each run, the values λO and λedges for the phase which minimizes max{λO, λedges} is

shown (this is not necessarily the last phase). The results show that our Resource Sharing
Algorithm consistently achieves a better congestion with a significantly lower running time.
Interestingly, on some of the chips, increasing σ from 1.05 to 2 improves not only running time,
but also congestion.

11 Conclusion

We showed that the general Min-Max Resource Sharing Problem can be solved efficiently
in theory and practice. We improved the best known worst-case running times, applied the
algorithm to global routing in chip design, and solved very large practical instances almost
optimally.

25

References

[1] Albrecht, C.: Global routing by new approximation algorithms for multicommodity flow. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems 20 (2001), 622–632

[2] Bienstock, D., and Iyengar, G.: Approximating fractional packings and coverings in O(1
ε) iterations.

SIAM Journal on Computing 35 (2006), 825–854

[3] Carden IV, R.C., Li, J., and Cheng, C.-K.: A global router with a theoretical bound on the optimum
solution. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15
(1996), 208–216

[4] Charikar, M., Chekuri, C., Goel, A., Guha, S., and Plotkin, S.: Approximating a finite metric by a
small number of tree metrics. Proceedings of the 39th Annual IEEE Symposium on the Foundations
of Computer Science (1998), 379–388

[5] Fleischer, L.K.: Approximating fractional multicommodity flow independent of the number of com-
modities. SIAM Journal on Discrete Mathematics 13 (2000), 505–520

[6] Garg, N., and Könemann, J.: Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. SIAM Journal on Computing 37 (2007), 630–652

[7] Grigoriadis, M.D., and Khachiyan, L.D.: Fast approximation schemes for convex programs with
many blocks and coupling constraints. SIAM Journal on Optimization 4 (1994), 86–107

[8] Grigoriadis, M.D., and Khachiyan, L.D.: Coordination complexity of parallel price-directive de-
composition. Mathematics of Operations Research 21 (1996), 321–340

[9] Hennessy, J.L., and Patterson, D.A.: Computer Architecture: A Quantitative Approach (4th Edi-
tion). Morgan Kaufmann, San Francisco 1997

[10] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, IEEE, 1985

[11] Intel R©64 and IA-32 Architectures Software Developer’s Manual, vol. 3A, rev. 031, order number
253668-031US, June 2009. Available online from http://www.intel.com

[12] Jansen, K., and Zhang, H.: Approximation algorithms for general packing problems and their
application to the multicast congestion problem. Mathematical Programming A 114 (2008), 183–
206

[13] Khandekar, R.: Lagrangian relaxation based algorithms for convex programming problems. PhD
thesis, Indian Institute of Technology, Delhi, 2004

[14] Müller, D.: Optimizing yield in global routing. Proceedings of the IEEE International Conference
on Computer-Aided Design (2006), 480–486

[15] Owens, S., Sarkar, S., and Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Proceedings
of the 22nd International Conference on Theorem Proving in Higher Order Logics; LNCS 5674
Springer (2009), 391–407

[16] Plotkin, S.A., Shmoys, D.B., and Tardos, É.: Fast approximation algorithms for fractional packing
and covering problems. Mathematics of Operations Research 2 (1995), 257–301

[17] Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer
programs. Journal of Computer and System Sciences 37 (1988), 130–143

26

[18] Raghavan, P., and Thompson, C.D.: Randomized rounding: a technique for provably good algo-
rithms and algorithmic proofs. Combinatorica 7 (1987), 365–374

[19] Shahrokhi, F., and Matula, D.W.: The maximum concurrent flow problem. Journal of the ACM 37
(1990), 318–334

[20] Villavicencio, J., and Grigoriadis, M.D.: Approximate structured optimization by cyclic block-
coordinate descent. In: Applied Mathematics and Parallel Computing (H. Fischer, B. Riedmüller,
S. Schäffler, eds.), Physica-Verlag, Heidelberg (1996), 359–371

[21] Vygen, J.: Near-optimum global routing with coupling, delay bounds, and power consumption.
In: Integer Programming and Combinatorial Optimization; Proceedings of the 10th International
IPCO Conference; LNCS 3064 (G. Nemhauser, D. Bienstock, eds.), Springer (2004), 308–324

[22] Young, N.E.: Randomized rounding without solving the linear program. Proceedings of the 6th
ACM-SIAM Symposium on Discrete Algorithms (1995), 170–178

[23] Young, N.E.: Sequential and parallel algorithms for mixed packing and covering. Proceedings of
the 42nd IEEE symposium on Foundation of Computer Science (2001), 538–546

27

Appendix: Comments on Khandekar’s Thesis

In Theorem 6.3.1 of his thesis [13] Khandekar develops an algorithm for the feasibility version
of the Min-Max Resource Sharing Problem which he calls Block-Angular Packing
Problem. This can be used to solve the optimization version in O(θ(|R| + |C|) log (|R|+ |C|)
(log log |R|+ω−2)) time. Unfortunately his analysis contains two errors. He reduces the Block-
Angular Packing Problem to the Substitute Mixed Problem, which he describes in
Section 6.2.

The first problem arises in Algorithm 6.2 (on page 57) in the update of the zj-variables. As
soon as they fall below the e−εΓ-threshold they are not updated any more and from then on
the definition of the weights in line (5) of Algorithm 6.1 allows for bigger values. Khandekar’s
proof of correctness for the Substitute Mixed Algorithm heavily relies on inequality (6.8).
The Substitute Mixed Problem is itself reduced to the Mixed Problem, whose analysis
is described in Section 5.1.3. Since inequality (6.8) is reduced to inequality (5.6), we have to
go into details there. The main ingredients for the proof of (5.6) are the inequalities (5.2) and
(5.3). He derives them from Corollaries 2.1.2 and 2.1.3, respectively. While the first one is
correct, the second one does not hold in the given case. In the middle of the proof of Theorem
2.1.1, which is the foundation of the two corollaries, Khandekar shows (on page 12)

(eεPri − e−εLri) · yr−1
i ≥

yri − y
r−1
i

ε
, (13)

where yri (= eεx
r
i) stands for the ith dual variable (named y or z in Chapter 5) after the rth

iteration, and Lri ,Pri ≥ 0 denote the change in xri ; so we have yri = eε(P
r
i −Lri) · yr−1

i . He uses
Lri = 0 in case of the first corollary and Pri = 0 in case of the second. Inequality (13) holds
as long as the dual variables change according to this definition, but the problem arises in
the particular case when the dual variables are not updated. We have Pri = 0, Lri > 0, and
yri = yr−1

i . Hence the left-hand side of (13) is negative while the right-hand side is zero. We
see that Corollary 2.1.3 can not be used for dual variables that do not change according to the
definition.

The second problem arises in Section 6.2.2 where Khandekar applies Fleischer’s [5] idea to
reduce the number of oracle calls. From page 59 on he uses eε-approximate oracles. He calls
an oracle call “fruitful” and hence uses the output x for the computation if y>fc(x)/1>y

z>gc(x)/1>z
≤ eε.

Otherwise it is unfruitful and the next customer’s oracle is queried. In the proof of Lemma 6.2.4
he wants to bound the number of unfruitful oracle calls by showing that every t unfruitful calls
the value of the expression 1

>y
1>z

rises by at least a factor of eε. Since 1
>y
1>z

is bounded, this would
imply that the total number of such oracle calls can be bounded. Therefore he claims (on page
61) that after an unfruitful oracle call we have

min
x′∈Bc

y>f c(x′)/1>y
z>gc(x′)/1>z

> eε.

However, by the definition of eε-approximate oracles and of unfruitful calls, the output x just
satisfies

eε min
x′∈Bc

y>f c(x′)/1>y
z>gc(x′)/1>z

≥ y>f c(x)/1>y
z>gc(x)/1>z

> eε

and hence minx′∈Bc
y>fc(x′)/1>y
z>gc(x′)/1>z

> 1, which is considerably weaker and not enough to deduce
his assertion.

28

