
Approximation Algorithms
for Traveling Salesmen

Jens Vygen
University of Bonn

Approximation Algorithms
for Traveling Salesmen

Jens Vygen
University of Bonn

Approximation Algorithms
for Traveling Salesmen

Jens Vygen
University of Bonn

Variants of the TSP

, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.

Variants of the TSP, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.

Variants of the TSP, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.

Variants of the TSP, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.

Variants of the TSP, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2
2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

3

2

2
2

2

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G

I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G

Eulerian spanning subgraph of 2G︸ ︷︷ ︸
its edge set is also called tour

Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:
I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour

Asymmetric TSP

Given a finite set V of cities and distances c : V × V → R≥0,
find a tour (a list v0, . . . , vk containing each vertex at least once,
with v0 = vk) of minimum total length

∑k
i=1 c(vi−1, vi).

I O(log n)-approximation algorithm, where n = |V |
(Frieze, Galbiati, Maffioli [1982])

I O(log n/ log log n)-approximation algorithm
(Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010])

I no 75
74 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio between 2 and logO(1) log n
(Anari and Oveis Gharan [2015])

Essentially the same holds for the version where start 6= end

Symmetric TSP: c(v ,w) = c(w , v) for all v ,w ∈ V
I best known approximation ratio 3

2
(Christofides [1976])

I no 123
122 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

∑
e={v,w}∈

(
V
2

) c(v ,w)xe ∑
v∈U, w∈V\U

x{v,w}

Subtour relaxation (assuming triangle inequality):

min
{

c(x) : x(δ(v)) = 2 (v ∈ V), x(δ(U)) ≥ 2 (∅ 6= U ⊂ V), x ≥ 0
}

(Dantzig, Fulkerson, Johnson [1954], Held, Karp [1970],

Cornuéjols, Fonlupt, Naddef [1985], Cunningham; Monma, Munson, Pulleyblank [1990])

c =graph distance

xe = 1
2

xe = 1

Symmetric TSP: c(v ,w) = c(w , v) for all v ,w ∈ V
I best known approximation ratio 3

2
(Christofides [1976])

I no 123
122 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

∑
e={v,w}∈

(
V
2

) c(v ,w)xe ∑
v∈U, w∈V\U

x{v,w}

Subtour relaxation (assuming triangle inequality):

min
{

c(x) : x(δ(v)) = 2 (v ∈ V), x(δ(U)) ≥ 2 (∅ 6= U ⊂ V), x ≥ 0
}

(Dantzig, Fulkerson, Johnson [1954], Held, Karp [1970],

Cornuéjols, Fonlupt, Naddef [1985], Cunningham; Monma, Munson, Pulleyblank [1990])

c =graph distance

xe = 1
2

xe = 1

Symmetric TSP: c(v ,w) = c(w , v) for all v ,w ∈ V
I best known approximation ratio 3

2
(Christofides [1976])

I no 123
122 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980]) ∑

e={v,w}∈
(

V
2

) c(v ,w)xe ∑
v∈U, w∈V\U

x{v,w}

Subtour relaxation (assuming triangle inequality):

min
{

c(x) : x(δ(v)) = 2 (v ∈ V), x(δ(U)) ≥ 2 (∅ 6= U ⊂ V), x ≥ 0
}

(Dantzig, Fulkerson, Johnson [1954], Held, Karp [1970],

Cornuéjols, Fonlupt, Naddef [1985], Cunningham; Monma, Munson, Pulleyblank [1990])

c =graph distance

xe = 1
2

xe = 1

Symmetric TSP: c(v ,w) = c(w , v) for all v ,w ∈ V
I best known approximation ratio 3

2
(Christofides [1976])

I no 123
122 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980]) ∑

e={v,w}∈
(

V
2

) c(v ,w)xe ∑
v∈U, w∈V\U

x{v,w}

Subtour relaxation (assuming triangle inequality):

min
{

c(x) : x(δ(v)) = 2 (v ∈ V), x(δ(U)) ≥ 2 (∅ 6= U ⊂ V), x ≥ 0
}

(Dantzig, Fulkerson, Johnson [1954], Held, Karp [1970],

Cornuéjols, Fonlupt, Naddef [1985], Cunningham; Monma, Munson, Pulleyblank [1990])

c =graph distance

xe = 1
2

xe = 1

Christofides’ Algorithm (Christofides [1976])

(Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}

Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm (Christofides [1976])

(Wolsey [1980])

I Take a cheapest spanning tree (V ,S)

I Do parity correction: add a cheapest T -join J, where
T is the set of vertices with an odd degree in (V ,S)

I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}

Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm (Christofides [1976])

(Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)

I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}

Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm (Christofides [1976])

(Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}

Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm, Wolsey’s Analysis (Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}

{
x ∈ R

(
V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}
Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm, Wolsey’s Analysis (Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}
Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Christofides’ Algorithm, Wolsey’s Analysis (Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V), x(

(V
2

)
) = |V | − 1

}
Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).

Integrality ratio

Worst ratio of best integral solution (= optimum tour) and
fractional solution (LP optimum)

I Wolsey’s analysis shows an upper bound of 3
2 .

I These instances (of the Graph TSP) show a lower bound of 4
3 :

c =graph distance

xe = 1
2

xe = 1

No better bounds are known!

Graph TSP

Given a graph G = (V ,E), let c(v ,w) =distance of v and w in G

Equivalently, look for a smallest Eulerian spanning subgraph of 2G.

Improved approximation ratio for subcubic graphs:
I 4

3 (Mömke, Svensson [2011])

(before, for cubic graphs: (Boyd, Sitters, van der Ster, Stougie [2011]))

I 685
684 impossible unless P = NP (Karpinski, Schmied [2013])

Improved approximation ratios for general graphs:
I 1.5− ε (Oveis Gharan, Saberi, Singh [2011])

I 1.461 (Mömke, Svensson [2011])

I 1.445 (Mucha [2012])

I 1.4 (Sebő, V. [2014])

s-t-path TSP
Given a symmetric TSP instance and two cities s and t ,
find a shortest tour that begins in s and ends in t .

Equivalently, find a cheapest {s, t}-tour in 2G, i.e.,
an {s, t}-join J such that (V , J) is connected

Can still do like Christofides,
but now s and t must have odd degree (Hoogeveen [1991])

s
t

I take cheapest spanning tree S
I add cheapest TS-join J

s-t-path TSP
Given a symmetric TSP instance and two cities s and t ,
find a shortest tour that begins in s and ends in t .

Equivalently, find a cheapest {s, t}-tour in 2G, i.e.,
an {s, t}-join J such that (V , J) is connected

Can still do like Christofides,
but now s and t must have odd degree (Hoogeveen [1991])

s
t

I take cheapest spanning tree S
I add cheapest TS-join J

s-t-path TSP
Given a symmetric TSP instance and two cities s and t ,
find a shortest tour that begins in s and ends in t .

Equivalently, find a cheapest {s, t}-tour in 2G, i.e.,
an {s, t}-join J such that (V , J) is connected

Can still do like Christofides,
but now s and t must have odd degree (Hoogeveen [1991])

s
t

I take cheapest spanning tree S

I add cheapest TS-join J

s-t-path TSP
Given a symmetric TSP instance and two cities s and t ,
find a shortest tour that begins in s and ends in t .

Equivalently, find a cheapest {s, t}-tour in 2G, i.e.,
an {s, t}-join J such that (V , J) is connected

Can still do like Christofides,
but now s and t must have odd degree (Hoogeveen [1991])

s
t

I take cheapest spanning tree S
I add cheapest TS-join J

Lower bounds for the s-t-path TSP

Approximation ratio of Christofides/Hoogeveen is at least 5
3 :

s t

Integrality ratio is at least 3
2 :

s t
xe = 1

2

xe = 1

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

Lower bounds for the s-t-path TSP

Approximation ratio of Christofides/Hoogeveen is at least 5
3 :

s t

Integrality ratio is at least 3
2 :

s t
xe = 1

2

xe = 1

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

Lower bounds for the s-t-path TSP

Approximation ratio of Christofides/Hoogeveen is at least 5
3 :

s t

Integrality ratio is at least 3
2 :

s t
xe = 1

2

xe = 1

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

s-t-path TSP: approximation ratios

General symmetric weights:
I 1.667 (Hoogeveen [1991])

I 1.619 (An, Kleinberg, Shmoys [2012])

I 1.6 (Sebő [2013])

I 1.599 (V. [2015])

I 1.566 (Gottschalk, V. [2016])←−
I 1.53 (Sebő, van Zuylen [2016]

In graphs:
I 1.586 (Mömke, Svensson [2011])

I 1.584 (Mucha [2012])

I 1.578 (An, Kleinberg, Shmoys [2012])

I 1.5 (Sebő, V. [2014])←−

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P1

P2

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

P0P2

P1

P3

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.

Ear induction for parity correction
For every T ,

min{|J| : J is a T -join} ≤ 1
2(n − 1 + keven),

where keven is the number of even ears.

change parity here

keven(P) :=

{
1 if P even
0 if P odd

in(P) := number of inner vertices of P

Proof:

I Split pendant ear P at the ver-
tices that have the wrong parity
so far into red and blue part

I Take the smaller part, with
≤ 1

2(in(P) + keven(P)) edges

I Change parity of an endpoint
of P if necessary; delete P;
iterate �

Ear induction for parity correction
For every T ,

min{|J| : J is a T -join} ≤ 1
2(n − 1 + keven),

where keven is the number of even ears.

change parity here

keven(P) :=

{
1 if P even
0 if P odd

in(P) := number of inner vertices of P

Proof:
I Split pendant ear P at the ver-

tices that have the wrong parity
so far into red and blue part

I Take the smaller part, with
≤ 1

2(in(P) + keven(P)) edges

I Change parity of an endpoint
of P if necessary; delete P;
iterate �

Ear induction for parity correction
For every T ,

min{|J| : J is a T -join} ≤ 1
2(n − 1 + keven),

where keven is the number of even ears.

change parity here

keven(P) :=

{
1 if P even
0 if P odd

in(P) := number of inner vertices of P

Proof:
I Split pendant ear P at the ver-

tices that have the wrong parity
so far into red and blue part

I Take the smaller part, with
≤ 1

2(in(P) + keven(P)) edges

I Change parity of an endpoint
of P if necessary; delete P;
iterate �

Ear induction for parity correction
For every T ,

min{|J| : J is a T -join} ≤ 1
2(n − 1 + keven),

where keven is the number of even ears.

change parity here

keven(P) :=

{
1 if P even
0 if P odd

in(P) := number of inner vertices of P

Proof:
I Split pendant ear P at the ver-

tices that have the wrong parity
so far into red and blue part

I Take the smaller part, with
≤ 1

2(in(P) + keven(P)) edges

I Change parity of an endpoint
of P if necessary; delete P;
iterate �

Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
. �

Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
. �

Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
. �

Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
. �

Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
. �

Sketch of the first 3
2-approximation

algorithm for s-t-path TSP in graphs (Sebő, V. [2014])

I Compute an ear-decomposition in which the 2-ears are
pendant and form a forest (using matroid intersection).

I If this is impossible, use Rado’s theorem to get a stronger
lower bound (details omitted).

I Now two constructions:
I (1) Ear induction yields a tour with at most

3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges. Good if k2 ≤ k≥4.

I (2) Take the 2-ears (but only one edge if s or t is the middle
vertex), add edges for connectivity, and do parity correction.
Yields a tour with at most n− 1 + 1

2

(
n− k2 − 1 + k≥4

)
edges.

Good if k2 ≥ k≥4.
I The better of the two tours has at most 3

2(n − 1) edges.

Sketch of the first 3
2-approximation

algorithm for s-t-path TSP in graphs (Sebő, V. [2014])

I Compute an ear-decomposition in which the 2-ears are
pendant and form a forest (using matroid intersection).

I If this is impossible, use Rado’s theorem to get a stronger
lower bound (details omitted).

I Now two constructions:
I (1) Ear induction yields a tour with at most

3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges. Good if k2 ≤ k≥4.

I (2) Take the 2-ears (but only one edge if s or t is the middle
vertex), add edges for connectivity, and do parity correction.
Yields a tour with at most n− 1 + 1

2

(
n− k2 − 1 + k≥4

)
edges.

Good if k2 ≥ k≥4.
I The better of the two tours has at most 3

2(n − 1) edges.

Sketch of the first 3
2-approximation

algorithm for s-t-path TSP in graphs (Sebő, V. [2014])

I Compute an ear-decomposition in which the 2-ears are
pendant and form a forest (using matroid intersection).

I If this is impossible, use Rado’s theorem to get a stronger
lower bound (details omitted).

I Now two constructions:
I (1) Ear induction yields a tour with at most

3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges. Good if k2 ≤ k≥4.

I (2) Take the 2-ears (but only one edge if s or t is the middle
vertex), add edges for connectivity, and do parity correction.
Yields a tour with at most n− 1 + 1

2

(
n− k2 − 1 + k≥4

)
edges.

Good if k2 ≥ k≥4.
I The better of the two tours has at most 3

2(n − 1) edges.

LP relaxation for s-t-path TSP

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

Cuts C = δ(U) with x∗(C) < 2 are called narrow. They form a chain.

LP relaxation for s-t-path TSP

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

Cuts C = δ(U) with x∗(C) < 2 are called narrow. They form a chain.

Second 3
2-approximation algorithm

for s-t-path TSP in graphs (Gao [2013])

I Solve the LP. Let x∗ be an optimum solution.
I Gao’s Theorem: There is a spanning tree (V ,S) in the support

that contains only one edge in every narrow cut. (“Gao tree”)

I Do parity correction. This costs at most 1
2c(x∗), because 1

2x∗

dominates a vector in the convex hull of TS-joins, where TS is
the set of vertices whose degree in S has the wrong parity

I Total number of edges at most n − 1 + 1
2c(x∗).

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

Second 3
2-approximation algorithm

for s-t-path TSP in graphs (Gao [2013])

I Solve the LP. Let x∗ be an optimum solution.
I Gao’s Theorem: There is a spanning tree (V ,S) in the support

that contains only one edge in every narrow cut. (“Gao tree”)

I Do parity correction. This costs at most 1
2c(x∗), because 1

2x∗

dominates a vector in the convex hull of TS-joins, where TS is
the set of vertices whose degree in S has the wrong parity

I Total number of edges at most n − 1 + 1
2c(x∗).

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

Second 3
2-approximation algorithm

for s-t-path TSP in graphs (Gao [2013])

I Solve the LP. Let x∗ be an optimum solution.
I Gao’s Theorem: There is a spanning tree (V ,S) in the support

that contains only one edge in every narrow cut. (“Gao tree”)
I Do parity correction. This costs at most 1

2c(x∗), because 1
2x∗

dominates a vector in the convex hull of TS-joins, where TS is
the set of vertices whose degree in S has the wrong parity

I Total number of edges at most n − 1 + 1
2c(x∗).

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

Now: general metrics
Most new algorithms (for all TSP variants) for general metrics
I first solve the natural LP relaxation,
I write the solution x∗ as convex combination (=distribution) of

spanning trees,
I sample a spanning tree from this distribution,
I and do parity correction.

A deterministic variant tries all spanning trees with positive
coefficient (less than n2).

Different distributions were used:
I max entropy distribution (Asadpour et al. [2010], Oveis Gharan et al. [2011])

I arbitrary distribution (An, Kleinberg, Shmoys [2012], Sebő [2013])

I distribution improved by local reassembling (V. [2015])

I Gao tree distribution (Gottschalk, V. [2016])

Now: general metrics
Most new algorithms (for all TSP variants) for general metrics
I first solve the natural LP relaxation,
I write the solution x∗ as convex combination (=distribution) of

spanning trees,
I sample a spanning tree from this distribution,
I and do parity correction.

A deterministic variant tries all spanning trees with positive
coefficient (less than n2).

Different distributions were used:
I max entropy distribution (Asadpour et al. [2010], Oveis Gharan et al. [2011])

I arbitrary distribution (An, Kleinberg, Shmoys [2012], Sebő [2013])

I distribution improved by local reassembling (V. [2015])

I Gao tree distribution (Gottschalk, V. [2016])

Now: general metrics
Most new algorithms (for all TSP variants) for general metrics
I first solve the natural LP relaxation,
I write the solution x∗ as convex combination (=distribution) of

spanning trees,
I sample a spanning tree from this distribution,
I and do parity correction.

A deterministic variant tries all spanning trees with positive
coefficient (less than n2).

Different distributions were used:
I max entropy distribution (Asadpour et al. [2010], Oveis Gharan et al. [2011])

I arbitrary distribution (An, Kleinberg, Shmoys [2012], Sebő [2013])

I distribution improved by local reassembling (V. [2015])

I Gao tree distribution (Gottschalk, V. [2016])

Best-of-Many-Christofides (An, Kleinberg, Shmoys [2012])

I Solve the LP, let x∗ be an optimum solution
I Decompose x∗ into spanning trees: write

x∗ =
∑
S∈S

pSχ
S

where pS ≥ 0 (S ∈ S) and
∑

S∈S pS = 1
I Do parity correction for each S ∈ S with pS > 0:

add a minimum cost TS-join
I Take the best of these tours

S is the set of edge sets of spanning trees

TS is the set of vertices whose degree in S has the wrong parity
(even for s or t , odd for other vertices)

Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Fact:

Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Fact:

Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Example: x∗ is a correction vector for every S, and x∗
2 almost

Fact:

Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Fact: narrow cut C is a TS-cut⇔ |S ∩ C| even

Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013], V. [2015])

I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.

I Let S = IS
.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.

I Take a convex combination of x∗
2 and χJS and fix violated

narrow cuts by adding fractions of

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid)

contain
(at least) one red and one blue edge. Thus yS = 2

3
x∗

2 + 1
3χ

JS + 1
3χ

IS is valid

Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013], V. [2015])

I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.
I Let S = IS

.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.

I Take a convex combination of x∗
2 and χJS and fix violated

narrow cuts by adding fractions of

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid)

contain
(at least) one red and one blue edge. Thus yS = 2

3
x∗

2 + 1
3χ

JS + 1
3χ

IS is valid

Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013], V. [2015])

I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.
I Let S = IS

.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.
I Take a convex combination of x∗

2 and χJS and fix violated
narrow cuts by adding fractions of χIS

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid) contain

(at least) one red and one blue edge. Thus yS = 2
3

x∗

2 + 1
3χ

JS + 1
3χ

IS is valid

Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013], V. [2015])

I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.
I Let S = IS

.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.
I Take a convex combination of x∗

2 and χJS and fix violated
narrow cuts by adding fractions of χIS′ for S′ ∈ S

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid) contain

(at least) one red and one blue edge. Thus yS = 2
3

x∗

2 + 1
3χ

JS + 1
3χ

IS is valid

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2

S2 with p2 = 1
4 S3 with p3 = 1

4

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4

S3 with p3 = 1
4

A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

A good distribution (Gottschalk, V. [2016])

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

I implies Gao’s Theorem (take S1)

I can be computed in polynomial time
I yields approximation ratio 1.566 (with best-of-many)
I also used by Sebő and van Zuylen [2016] for ratio 26

17

A good distribution (Gottschalk, V. [2016])

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

I implies Gao’s Theorem (take S1)
I can be computed in polynomial time

I yields approximation ratio 1.566 (with best-of-many)
I also used by Sebő and van Zuylen [2016] for ratio 26

17

A good distribution (Gottschalk, V. [2016])

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

I implies Gao’s Theorem (take S1)
I can be computed in polynomial time
I yields approximation ratio 1.566 (with best-of-many)

I also used by Sebő and van Zuylen [2016] for ratio 26
17

A good distribution (Gottschalk, V. [2016])

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .

s t

1

1

1 1

1

1

1

1

1

1
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

3
4

1
4

1
2

1
2

1
2

1
4

3
4

S1 with p1 = 1
2 S2 with p2 = 1

4 S3 with p3 = 1
4

I implies Gao’s Theorem (take S1)
I can be computed in polynomial time
I yields approximation ratio 1.566 (with best-of-many)
I also used by Sebő and van Zuylen [2016] for ratio 26

17

Proof: outline

I Start with

x∗ =
1
r

r∑
j=1

χSj

I Deal with the trees Sj (j = 1, . . . , r) in this order
I For each j : let

{s}=U1 ⊂ · · · ⊂ Uk =V \{t}

be the sets with
x∗(δ(Ui)) ≤ 2− j

r
I Deal with the cuts δ(Ui) (i = 1, . . . , k) in this order
I Need |Sj ∩ δ(Ui)| = 1
I First make Sj [Ui] connected

Proof: make Sj [Ui] connected
Case 1: Sj [Ui \Ui−1] disconnected

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui)

X 7

Proof: make Sj [Ui] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui)

X 7

Proof: make Sj [Ui] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Proof: make Sj [Ui] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Case 2: Sj [Ui \Ui−1] connected⇒ ∃ k> j : Sk ∩ δ(Ui−1) ∩ δ(Ui) = ∅

+

−

δ(Ui−2) δ(Ui−1) δ(Ui)

X 7 7

Proof: make Sj [Ui] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Case 2: Sj [Ui \Ui−1] connected⇒ ∃ k> j : Sk ∩ δ(Ui−1) ∩ δ(Ui) = ∅

−

+

−
+

δ(Ui−2) δ(Ui−1) δ(Ui)

X 3 7

Proof: if Sj [Ui] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Proof: if Sj [Ui] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 7

Proof: if Sj [Ui] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

− +

δ(Ui−2) δ(Ui−1) δ(Ui)

X X 3

TSP variants – state of the art
Integrality ratios. Upper bounds = approximation ratios unless mentioned otherwise

2ECSS, general metrics:
I between 6

5 and 3
2 (Alexander, Boyd, Elliott-Magwood [2006])

2ECSS, unweighted graphs:
I between 8

7 (Boyd, Fu, Sun [2014]) and 4
3 (Sebő, V. [2014])

TSP, general metrics:
I between 4

3 and 3
2 (Wolsey [1980])

TSP, unweighted graphs:
I between 4

3 and 7
5 (Sebő, V. [2014])

s-t-path TSP, general metrics:
I between 3

2 and 26
17 (Sebő, van Zuylen [2016])

s-t-path TSP, unweighted graphs:
I 3

2 (Sebő, V. [2014])

ATSP, 4-inequality:
I between 2 (Boyd, Elliott-Magwood [2005], Charikar, Goemans, Karloff [2006])

and logO(1) log n (Anari and Oveis Gharan [2015]);
apx ratio 8 log n/ log log n (Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010])

ATSP, unweighted digraphs:
I between 3

2 (Gottschalk [2013]) and 13; apx ratio 27 + ε (Svensson [2015])

How important are integrality ratios?

I We cannot solve the LPs combinatorially in polynomial time.
I Integrality ratios do not imply lower bounds on approximability.

Example: Euclidean TSP
I approximation scheme (Arora [1998])

I subtour relaxation has integrality ratio 4
3 (Hougardy [2014])

I Integrality ratios imply bounds on what we can achieve
if we use this LP as lower bound.

Current and future research

I better than 3
2 for s-t-path TSP in graphs?

I 3
2 for s-t-path TSP in general metrics?

I better than Sebő’s 8
5 for T -tours in general metrics?

I improve on Christofides’ 3
2 -approximation algorithm? 4

3?
I constant factor for asymmetric TSP?
I generalizations and practical applications

Thank you!

I J. Vygen: New approximation algorithms for the TSP.
OPTIMA 90 (2012), 1–12

I A. Sebő, J. Vygen: Shorter tours by nicer ears: 7/5-approximation for the
graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica 34 (2014), 597–629

I J. Vygen: Reassembling trees for the traveling salesman.
SIAM Journal on Discrete Mathematics 30 (2016), 875–894

I C. Gottschalk, J. Vygen: Better s-t-tours by Gao trees.
Proceedings of IPCO 2016, 126–137

	Introduction
	End

