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Variants of the TSP

, Complexity

I start = end?
I symmetric or asymmetric?
I triangle inequality?
I visit every city at least once or exactly once?

All versions are NP-hard.

An f -approximation algorithm runs in polynomial time and always
computes a tour that is at most f times longer than optimum.
The best such f is called the approximation ratio.

If no triangle inequality and must visit every city exactly once,
no approximation algorithm exists unless P = NP.

Whether we assume triangle inequality or allow visiting cities
more than once is equivalent.
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Example: Graph TSP
Given a connected graph G, find a minimum length closed edge
progression in G that visits every vertex at least once.

Equivalently:

I find a shortest Hamiltonian circuit in the metric closure of G
I find a smallest Eulerian spanning subgraph of 2G︸ ︷︷ ︸

its edge set is also called tour
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Asymmetric TSP

Given a finite set V of cities and distances c : V × V → R≥0,
find a tour (a list v0, . . . , vk containing each vertex at least once,
with v0 = vk ) of minimum total length

∑k
i=1 c(vi−1, vi).

I O(log n)-approximation algorithm, where n = |V |
(Frieze, Galbiati, Maffioli [1982])

I O(log n/ log log n)-approximation algorithm
(Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010])

I no 75
74 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio between 2 and logO(1) log n
(Anari and Oveis Gharan [2015])

Essentially the same holds for the version where start 6= end



Symmetric TSP: c(v ,w) = c(w , v) for all v ,w ∈ V
I best known approximation ratio 3

2
(Christofides [1976])

I no 123
122 -approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980])

∑
e={v,w}∈

(
V
2

) c(v ,w)xe ∑
v∈U, w∈V\U

x{v,w}

Subtour relaxation (assuming triangle inequality):

min
{

c(x) : x(δ(v)) = 2 (v ∈ V ), x(δ(U)) ≥ 2 (∅ 6= U ⊂ V ), x ≥ 0
}

(Dantzig, Fulkerson, Johnson [1954], Held, Karp [1970],

Cornuéjols, Fonlupt, Naddef [1985], Cunningham; Monma, Munson, Pulleyblank [1990])

c =graph distance

xe = 1
2

xe = 1
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Christofides’ Algorithm (Christofides [1976])

(Wolsey [1980])

I Take a cheapest spanning tree (V ,S)
I Do parity correction: add a cheapest T -join J, where

T is the set of vertices with an odd degree in (V ,S)
I Output S + J

A T -join is a set J of edges such that T is the set of vertices with
odd degree in (V , J). (Edmonds [1965])

{
x ∈ R

(
V
2

)
≥0 : x(δ(U)) ≥ 1 (U ⊂ V , |T ∩ U| odd)

}
{

x ∈ R
(

V
2

)
≥0 : x(

(U
2

)
) ≤ |U| − 1 (∅ 6= U ⊂ V ), x(

(V
2

)
) = |V | − 1

}

Analysis:
I n−1

n x∗ is in the convex hull of spanning trees (Edmonds [1970])

I 1
2x∗ dominates a vector in the convex hull of T -joins

(Edmonds, Johnson [1973])

I c(S + J) = c(S) + c(J) ≤ n−1
n c(x∗) + 1

2c(x∗) ≤ 3
2c(x∗).
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Integrality ratio

Worst ratio of best integral solution (= optimum tour) and
fractional solution (LP optimum)

I Wolsey’s analysis shows an upper bound of 3
2 .

I These instances (of the Graph TSP) show a lower bound of 4
3 :

c =graph distance

xe = 1
2

xe = 1

No better bounds are known!



Graph TSP

Given a graph G = (V ,E), let c(v ,w) =distance of v and w in G

Equivalently, look for a smallest Eulerian spanning subgraph of 2G.

Improved approximation ratio for subcubic graphs:
I 4

3 (Mömke, Svensson [2011])

(before, for cubic graphs: (Boyd, Sitters, van der Ster, Stougie [2011]))

I 685
684 impossible unless P = NP (Karpinski, Schmied [2013])

Improved approximation ratios for general graphs:
I 1.5− ε (Oveis Gharan, Saberi, Singh [2011])

I 1.461 (Mömke, Svensson [2011])

I 1.445 (Mucha [2012])

I 1.4 (Sebő, V. [2014])



s-t-path TSP
Given a symmetric TSP instance and two cities s and t ,
find a shortest tour that begins in s and ends in t .

Equivalently, find a cheapest {s, t}-tour in 2G, i.e.,
an {s, t}-join J such that (V , J) is connected

Can still do like Christofides,
but now s and t must have odd degree (Hoogeveen [1991])

s
t

I take cheapest spanning tree S
I add cheapest TS-join J
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Lower bounds for the s-t-path TSP

Approximation ratio of Christofides/Hoogeveen is at least 5
3 :

s t

Integrality ratio is at least 3
2 :

s t
xe = 1

2

xe = 1

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0
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s-t-path TSP: approximation ratios

General symmetric weights:
I 1.667 (Hoogeveen [1991])

I 1.619 (An, Kleinberg, Shmoys [2012])

I 1.6 (Sebő [2013])

I 1.599 (V. [2015])

I 1.566 (Gottschalk, V. [2016])←−
I 1.53 (Sebő, van Zuylen [2016]

In graphs:
I 1.586 (Mömke, Svensson [2011])

I 1.584 (Mucha [2012])

I 1.578 (An, Kleinberg, Shmoys [2012])

I 1.5 (Sebő, V. [2014])←−



Ear-decompositions

Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k ) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

trivial ears (length 1)

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.
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Ear induction for parity correction
For every T ,

min{|J| : J is a T -join} ≤ 1
2(n − 1 + keven),

where keven is the number of even ears.

change parity here

keven(P) :=

{
1 if P even
0 if P odd

in(P) := number of inner vertices of P

Proof:

I Split pendant ear P at the ver-
tices that have the wrong parity
so far into red and blue part

I Take the smaller part, with
≤ 1

2(in(P) + keven(P)) edges

I Change parity of an endpoint
of P if necessary; delete P;
iterate �
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Ear induction for tours

Compute a tour with at most 3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges:

change parity here

change parity here

I Split ear at the vertices that
have wrong parity so far.

I Take smaller part for
obtaining a T -join.

I Double smaller part for
obtaining a T -tour.

I May delete one pair of parallel
edges (if there is one).

Need at most 3
2 |in(P)| − 1 + 1

2keven(P) edges, or in(P) + 1.
This is at most 3

2 |in(P)|+ 1
2

(
k2(P)− k≥4(P)

)
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Sketch of the first 3
2-approximation

algorithm for s-t-path TSP in graphs (Sebő, V. [2014])

I Compute an ear-decomposition in which the 2-ears are
pendant and form a forest (using matroid intersection).

I If this is impossible, use Rado’s theorem to get a stronger
lower bound (details omitted).

I Now two constructions:
I (1) Ear induction yields a tour with at most

3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges. Good if k2 ≤ k≥4.

I (2) Take the 2-ears (but only one edge if s or t is the middle
vertex), add edges for connectivity, and do parity correction.
Yields a tour with at most n− 1 + 1

2

(
n− k2 − 1 + k≥4

)
edges.

Good if k2 ≥ k≥4.
I The better of the two tours has at most 3

2(n − 1) edges.
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I Compute an ear-decomposition in which the 2-ears are
pendant and form a forest (using matroid intersection).

I If this is impossible, use Rado’s theorem to get a stronger
lower bound (details omitted).

I Now two constructions:
I (1) Ear induction yields a tour with at most

3
2(n − 1) + 1

2

(
k2 − k≥4

)
edges. Good if k2 ≤ k≥4.

I (2) Take the 2-ears (but only one edge if s or t is the middle
vertex), add edges for connectivity, and do parity correction.
Yields a tour with at most n− 1 + 1

2

(
n− k2 − 1 + k≥4

)
edges.

Good if k2 ≥ k≥4.
I The better of the two tours has at most 3

2(n − 1) edges.



Sketch of the first 3
2-approximation

algorithm for s-t-path TSP in graphs (Sebő, V. [2014])
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LP relaxation for s-t-path TSP

min c(x)
subject to x(δ(U)) ≥ 2 (∅ 6= U ⊂ V , |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ 6= U ⊂ V , |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \ {s, t})
x(δ(v)) = 1 (v ∈ {s, t})

x ≥ 0

s t
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Cuts C = δ(U) with x∗(C) < 2 are called narrow. They form a chain.
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Second 3
2-approximation algorithm

for s-t-path TSP in graphs (Gao [2013])

I Solve the LP. Let x∗ be an optimum solution.
I Gao’s Theorem: There is a spanning tree (V ,S) in the support

that contains only one edge in every narrow cut. (“Gao tree”)

I Do parity correction. This costs at most 1
2c(x∗), because 1

2x∗

dominates a vector in the convex hull of TS-joins, where TS is
the set of vertices whose degree in S has the wrong parity

I Total number of edges at most n − 1 + 1
2c(x∗).
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Now: general metrics
Most new algorithms (for all TSP variants) for general metrics
I first solve the natural LP relaxation,
I write the solution x∗ as convex combination (=distribution) of

spanning trees,
I sample a spanning tree from this distribution,
I and do parity correction.

A deterministic variant tries all spanning trees with positive
coefficient (less than n2).

Different distributions were used:
I max entropy distribution (Asadpour et al. [2010], Oveis Gharan et al. [2011])

I arbitrary distribution (An, Kleinberg, Shmoys [2012], Sebő [2013])

I distribution improved by local reassembling (V. [2015])

I Gao tree distribution (Gottschalk, V. [2016])
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Best-of-Many-Christofides (An, Kleinberg, Shmoys [2012])

I Solve the LP, let x∗ be an optimum solution
I Decompose x∗ into spanning trees: write

x∗ =
∑
S∈S

pSχ
S

where pS ≥ 0 (S ∈ S) and
∑

S∈S pS = 1
I Do parity correction for each S ∈ S with pS > 0:

add a minimum cost TS-join
I Take the best of these tours

S is the set of edge sets of spanning trees

TS is the set of vertices whose degree in S has the wrong parity
(even for s or t , odd for other vertices)



Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Fact:
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Fact:



Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Example: x∗ is a correction vector for every S, and x∗
2 almost

Fact:



Basic analysis (An, Kleinberg, Shmoys [2012])

The result has cost

min
S∈S: pS>0

(
c(S) + min{c(J) : J is a TS-join}

)
≤

∑
S∈S

pS
(
c(S) + min{c(J) : J is a TS-join}

)
= c(x∗) +

∑
S∈S

pS min{c(J) : J is a TS-join}

≤ c(x∗) +
∑
S∈S

pSc(yS)

for any set of correction vectors yS (S ∈ S) such that yS is in the
TS-join polyhedron{

y ∈ RE
≥0 : y(C) ≥ 1 ∀ TS-cuts C

}
(Edmonds, Johnson [1973])

Fact: narrow cut C is a TS-cut⇔ |S ∩ C| even



Correction vectors (An, Kleinberg, Shmoys [2012], Sebő [2013], V. [2015])

I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.

I Let S = IS
.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.

I Take a convex combination of x∗
2 and χJS and fix violated

narrow cuts by adding fractions of

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid)

contain
(at least) one red and one blue edge. Thus yS = 2

3
x∗

2 + 1
3χ

JS + 1
3χ

IS is valid
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I Need a correction vector yS with yS(C) ≥ 1 for all TS-cuts C.
I x∗

2 is a valid correction vector except for narrow cuts C with
|S ∩ C| even.

I In particular, it is valid for Gao trees.
I Let S = IS

.
∪ JS, where IS is the s-t-path and JS is the TS-join.

I Then χJS is a valid correction vector.
I Take a convex combination of x∗

2 and χJS and fix violated
narrow cuts by adding fractions of χIS′ for S′ ∈ S

s t

S = IS
.
∪ JS. Narrow cuts (grey) that need parity correction (solid) contain

(at least) one red and one blue edge. Thus yS = 2
3

x∗

2 + 1
3χ

JS + 1
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A good distribution (Gottschalk, V. [2016])

I Gao trees do not need fixing.
I Unfortunately, there may be no cheap Gao tree. (Gao [2015])

I But the path IS of a Gao tree can be used to help other trees.

Main Theorem:
There are S1, . . . ,Sr ∈ S and p1, . . . ,pr > 0 with

∑r
j=1 pj = 1 and

x∗ =
∑r

j=1 pjχ
Sj , and for every narrow cut C there exists a k with∑k

j=1 pj ≥ 2− x∗(C) and |C ∩ Sj | = 1 for all j = 1, . . . , k .
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4 S3 with p3 = 1
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I can be computed in polynomial time
I yields approximation ratio 1.566 (with best-of-many)
I also used by Sebő and van Zuylen [2016] for ratio 26
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Proof: outline

I Start with

x∗ =
1
r

r∑
j=1

χSj

I Deal with the trees Sj (j = 1, . . . , r) in this order
I For each j : let

{s}=U1 ⊂ · · · ⊂ Uk =V \{t}

be the sets with
x∗(δ(Ui)) ≤ 2− j

r
I Deal with the cuts δ(Ui) (i = 1, . . . , k ) in this order
I Need |Sj ∩ δ(Ui)| = 1
I First make Sj [Ui ] connected



Proof: make Sj [Ui ] connected
Case 1: Sj [Ui \Ui−1] disconnected

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui )

X 7



Proof: make Sj [Ui ] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui )

X 7



Proof: make Sj [Ui ] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7

Case 2: Sj [Ui \Ui−1] connected

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7



Proof: make Sj [Ui ] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7

Case 2: Sj [Ui \Ui−1] connected⇒ ∃ k> j : Sk ∩ δ(Ui−1) ∩ δ(Ui) = ∅

+

−

δ(Ui−2) δ(Ui−1) δ(Ui )

X 7 7



Proof: make Sj [Ui ] connected
Case 1: Sj [Ui \Ui−1] disconnected⇒ ∃ k> j : Sk [Ui \Ui−1] connected

−+

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7

Case 2: Sj [Ui \Ui−1] connected⇒ ∃ k> j : Sk ∩ δ(Ui−1) ∩ δ(Ui) = ∅

−

+

−
+

δ(Ui−2) δ(Ui−1) δ(Ui )

X 3 7



Proof: if Sj [Ui ] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7



Proof: if Sj [Ui ] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 7



Proof: if Sj [Ui ] connected, get |Sj ∩ δ(Ui)| = 1

Then ∃ k > j : |Sk ∩ δ(Ui)| = 1.

− +

δ(Ui−2) δ(Ui−1) δ(Ui )

X X 3



TSP variants – state of the art
Integrality ratios. Upper bounds = approximation ratios unless mentioned otherwise

2ECSS, general metrics:
I between 6

5 and 3
2 (Alexander, Boyd, Elliott-Magwood [2006])

2ECSS, unweighted graphs:
I between 8

7 (Boyd, Fu, Sun [2014]) and 4
3 (Sebő, V. [2014])

TSP, general metrics:
I between 4

3 and 3
2 (Wolsey [1980])

TSP, unweighted graphs:
I between 4

3 and 7
5 (Sebő, V. [2014])

s-t-path TSP, general metrics:
I between 3

2 and 26
17 (Sebő, van Zuylen [2016])

s-t-path TSP, unweighted graphs:
I 3

2 (Sebő, V. [2014])

ATSP, 4-inequality:
I between 2 (Boyd, Elliott-Magwood [2005], Charikar, Goemans, Karloff [2006])

and logO(1) log n (Anari and Oveis Gharan [2015]);
apx ratio 8 log n/ log log n (Asadpour, Goemans, Mądry, Oveis Gharan, Saberi [2010])

ATSP, unweighted digraphs:
I between 3

2 (Gottschalk [2013]) and 13; apx ratio 27 + ε (Svensson [2015])



How important are integrality ratios?

I We cannot solve the LPs combinatorially in polynomial time.
I Integrality ratios do not imply lower bounds on approximability.

Example: Euclidean TSP
I approximation scheme (Arora [1998])

I subtour relaxation has integrality ratio 4
3 (Hougardy [2014])

I Integrality ratios imply bounds on what we can achieve
if we use this LP as lower bound.



Current and future research

I better than 3
2 for s-t-path TSP in graphs?

I 3
2 for s-t-path TSP in general metrics?

I better than Sebő’s 8
5 for T -tours in general metrics?

I improve on Christofides’ 3
2 -approximation algorithm? 4

3?
I constant factor for asymmetric TSP?
I generalizations and practical applications



Thank you!
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