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Chip design

Placement Problem:
Given
a (large) set of rectan-
gular objects with pins,
a rectangular chip area,
fixed objects and/or pins,
and a partition of the
set of pins into nets;

place the objects within
the chip area without
overlaps such that
“the pins of every net
are close to each other”

Simplifications: all objects are unit squares with pins in the center,
each net has two pins, no fixed objects/pins, measure total `1-length
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Models with polylogarithmic approximation algorithms

I Vempala [1998]: minimize total length and maximum edge
length, O(log3.5 n)-approximation

I Even, Guha, Schieber [2000]: embed edges by edge-disjoint
paths, minimize area, O(log4 n)-approximation

where n is the number of objects that are to be placed.

In the following:
I 2-dimensional arrangement: minimize total length only



d-dimensional arrangement problem

Given: undirected graph G = (V ,E) and k ≥ d
√
|V |

Find: injection p :V→{1, ..., k}d minimizing
∑

{v ,w}∈E

||p(v)− p(w)||1

I d = 1: linear arrangement problem
I d = 2: interesting model of placement in chip design
I this talk: d ≥ 2 fixed; unit weights, but all results generalize to

weighted version (given edge weights, take weighted sum)



Approximation algorithms for d-dimensional arrangement

Given: undirected graph G = (V ,E) and k ≥ d
√
|V |

Find: injection p :V→{1, ..., k}d minimizing
∑

{v ,w}∈E

||p(v)− p(w)||1

I d = 1: linear arrangement problem
I NP-hard: Garey, Johnson [1976]
I O(

√
log n log log n)-approximation: Feige, Lee [2007] and

independently Charikar, Hajiaghayi, Karloff, Rao [2010],
improving on Rao, Richa [2004]

I d ≥ 2 (fixed):
I sketch of O(log2 n)-approximation by recursive bipartitioning:

Hansen [1989], using Leighton, Rao [1999]
I can lead to O(log3/2 n)-approximation when using

Arora, Rao, Vazirani [2009]

Here n = |V |.
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Reduction to linear arrangement with “d-dimensional cost”

min

 ∑
{v ,w}∈E

d
√
|p(v)− p(w)|

∣∣∣∣∣∣ p : V → {1, . . . ,n} bijective


I reduction proposed by Even, Naor, Rao, Schieber [2000]
I O(log n log log n)-approximation for this problem by

Even et al. [2000]
I O(

√
log n)-approximation for this problem by

Charikar, Makarychev, Makarychev [2007]

Unfortunately, this does not imply the same approximation ratios
for d-dimensional arrangement!
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Reduction to linear arrangement with d-dimensional cost

Lemma
Using Hilbert’s space-filling curve, we can
find an injection p : {1, . . . ,n} → {1, . . . , k}d
such that ||p(i)− p(j)||1 ≤ 4(d + 1) d

√
|i − j |

for all i , j .

Corollary
Given a linear arrangement of G with d-dimensional cost γ, we
can compute a d-dimensional arrangement of G with cost O(γ).

(Even, Naor, Rao, Schieber [2000])

However,
the optimum d-dimensional cost for a linear arrangement can be
much larger than the optimum cost of a d-dimensional arrangement.
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How good is the reduction?

Theorem
For any graph G = (V ,E) and any injection p : V → {1, . . . , k}d ,
there exists a bijection q : V → {1, . . . ,n} such that∑
{v ,w}∈E

d
√
|q(v)− q(w)| ≤ O(log n)

∑
{v ,w}∈E

||p(v)− p(w)||1 .

There are pairs (G,p) for which this bound is tight.

Therefore a factor O(log n) is lost in this reduction!



Upper bound

Lemma
For any graph G = (V ,E) and any injection p : V → {1, . . . , k}d
(where k ,d ∈ N), there exists a bijection q : V → {1, . . . ,n} such
that ∑
{v ,w}∈E

d
√
|q(v)− q(w)| ≤ 32d ln n

∑
{v ,w}∈E

||p(v)− p(w)||1 .



Proof of upper bound (sketch)
I Consider cut coordinates with enough vertices on both sides
I If sufficiently many such coordinates exist, take smallest cut
I Continue with next dimension until each set is a singleton

v1

v2

v3

v4

v5

v6 v9

v7

v8

v10

cut

v1

v2

v3

v4

v5

v6 v9

cut
v7

v8

v10

don’t cut
Iteration 1 Iteration 2

Yields balanced hierarchical decomposition; order vertices accordingly



Lower bound

Consider the d-dimensional hypercube graph (V d
k ,E

d
k ):

I V d
k = {1, . . . , k}d

I Ed
k =

{
{x , y} : x , y ∈ V d

k , ||x − y ||1 = 1
}

The identity function is a d-dimensional arrangement of cost∑
{v ,w}∈Ed

k
||v − w ||1 = |Ed

k | = d(kd − kd−1) < dn.

Lemma
Let d ≥ 2. If q : V d

k → {1, . . . ,n} is any bijection, then∑
{v ,w}∈Ed

k

d
√
|q(v)− q(w)| >

3
16

(
1−

(3
4

) d−1
d
)(

1−
(3

4

)1/d
)

d n log2 n − 3dn
64 .



Spreading LP

min
∑

e={v ,w}∈E

l(v ,w)

s.t. l(v ,w) = l(w , v) ≥ 0 (v ,w ∈ V )

l(u, v) + l(v ,w) ≥ l(u,w) (u, v ,w ∈ V )∑
u∈U

l(u, v) ≥ (|U| − 1)1+1/d

4
(U ⊆ V , v ∈ U)

I Can be solved in polynomial time
(Even, Naor, Rao, Schieber [2000], Bornstein, Vempala [2004])

I LP value is a lower bound on the optimum cost of a
d-dimensional arrangement (Even [2011])

I Implies that the Even-Naor-Rao-Schieber algorithm is indeed
an O(log n log log n)-approximation algorithm
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Approximating any metric by a tree metric

Lemma (Fakcharoenphol, Rao and Talwar [2004])
Let G = (V ,E) be a graph, n = |V | ≥ 2, and l : V × V a metric.
Then one can compute in polynomial time a
2-hierarchically well-separated tree (T , r , c)
such that V is the set of leaves of T ,
and the induced tree metric l ′ satisfies:

(a) l ′(v ,w) ≥ l(v ,w) for all v ,w ∈ V, and

(b)
∑

{v ,w}∈E

l ′(v ,w) ≤ O(log n)
∑

{v ,w}∈E

l(v ,w).
r

4 4

2 2 2 2 2

1 1 1 11 11 11



O(log n)-approximation algorithm for d-dimensional arrangement
r

u

w

v x
Tu

4 4

2 2 2 2 2

1 1 1 11 11 11

I Solve spreading LP −→ l
I Approximate l by tree metric −→ (T , l ′)
I Order of the leaves of T in the

natural way −→ q : V → {1, . . . ,n}
I Arrange the vertices according

to the Hilbert curve lemma.

Proof of approximation ratio:
I Let {v ,w} ∈ E and u the nearest common ancestor of v and w .
I Due to the spreading constraints, there is an x ∈ Tu such that

l(v , x) ≥ 1
4

d
√
|Tu| − 1. Then,

d
√
|q(v)− q(w)| ≤ d

√
|Tu| − 1 ≤ 4 l(v , x) ≤ 4 l ′(v , x) ≤ 8 l ′(v ,w).

I Hence,∑
{v ,w}∈E

d
√
|q(v)− q(w)| ≤ 8

∑
{v ,w}∈E

l ′(v ,w) ≤ O(log n)
∑

{v ,w}∈E

l(v ,w).

�
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Discussion

Currently best approximation algorithm (see above)
I finds a “high-dimensional embedding” (spreading metric),
I approximates it by a tree metric (by recursive bipartitioning),
I makes it a linear order,
I makes it d-dimensional via a space-filling curve.

Poly-time but very slow. No fixed pins etc. O(log n)-approximation

Some of the best heuristics in practice (d = 2) proceed as follows
(e.g., BonnPlace, Brenner, Struzyna, Vygen [2008]):
I finds a 2-dimensional embedding (quadratic placement)
I uses recursive quadrisection (Vygen [2005])
I concludes with legalization (Brenner, Vygen [2004])

Fast. Needs fixed pins for “spreading”. No approximation guarantee
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Open problems

Bring
theory and practice
closer together

I Improve approximation guarantee (or prove hardness)
I Obtain O(log n)-approximation without spreading LP
I Generalize to practically more relevant problems
I Prove approximation guarantee for a practical algorithm
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