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Placement Problem:
Given

a (large) set of rectan-
gular objects with pins,

a rectangular chip area,
fixed objects and/or pins,

and a partition of the
set of pins into nets;

place the objects within
the chip area without
overlaps such that

“the pins of every net
are close to each other”
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Simplifications: all objects are unit squares with pins in the center,
each net has two pins, no fixed objects/pins, measure total ¢4-length



Models with polylogarithmic approximation algorithms

» Vempala [1998]: minimize total length and maximum edge
length, O(log®° n)-approximation

» Even, Guha, Schieber [2000]: embed edges by edge-disjoint
paths, minimize area, O(log* n)-approximation

where n is the number of objects that are to be placed.

In the following:

» 2-dimensional arrangement: minimize total length only



d-dimensional arrangement problem
Given: undirected graph G = (V,E) and k > {/] V]|

Find: injection p: V — {1, ..., K} minimizing Z l|lp(v) — p(w)]l
{v,w}eE

Vs

—_ —

» d = 1: linear arrangement problem
» d = 2: interesting model of placement in chip design

» this talk: d > 2 fixed; unit weights, but all results generalize to
weighted version (given edge weights, take weighted sum)



Approximation algorithms for d-dimensional arrangement

Given: undirected graph G = (V,E) and k > {/|V/|
Find: injection p: V — {1, ..., K} minimizing Z l|lo(v) — p(w)]l4
{v,w}eE
» d = 1: linear arrangement problem

» NP-hard: Garey, Johnson [1976]

» O(+/log n loglog n)-approximation: Feige, Lee [2007] and
independently Charikar, Hajiaghayi, Karloff, Rao [2010],
improving on Rao, Richa [2004]

Here n=|V/|.
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Given: undirected graph G = (V,E) and k > {/|V/|
Find: injection p: V — {1, ..., K} minimizing Z l|lo(v) — p(w)]l4
{v,w}eE
» d = 1: linear arrangement problem

» NP-hard: Garey, Johnson [1976]

» O(+/log n loglog n)-approximation: Feige, Lee [2007] and
independently Charikar, Hajiaghayi, Karloff, Rao [2010],
improving on Rao, Richa [2004]

» d > 2 (fixed):
» sketch of O(log? n)-approximation by recursive bipartitioning:
Hansen [1989], using Leighton, Rao [1999]
» can lead to O(log®? n)-approximation when using
Arora, Rao, Vazirani [2009]

Here n=|V/|.



Reduction to linear arrangement with “d-dimensional cost”

min{ S /Io(v) = p(w)

{v,w}eE

p:V—={1,...,n} bijective}

» reduction proposed by Even, Naor, Rao, Schieber [2000]

» O(log n loglog n)-approximation for this problem by
Even et al. [2000]

» O(4/log n)-approximation for this problem by
Charikar, Makarychev, Makarychev [2007]
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Unfortunately, this does not imply the same approximation ratios
for d-dimensional arrangement!



Reduction to linear arrangement with d-dimensional cost

Lemma
Using Hilbert's space-filling curve, we can
find an injectionp : {1,...,n} — {1,... k}9 :I

.
such that (i) ~ p(j) 1 < 4(d + 1) /=] 1]

for all i, . - E‘] ,l:' -
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Reduction to linear arrangement with d-dimensional cost

Lemma

Using Hilbert's space-filling curve, we can

find an injectionp : {1,...,n} — {1,... k}9 :I I:
such that ||p(i) — p(j)ll1 < 4(d + 1) /[ — J| ]

for all i, . - l:; ;:1 II:I

Corollary

Given a linear arrangement of G with d-dimensional cost -, we
can compute a d-dimensional arrangement of G with cost O(7).

(Even, Naor, Rao, Schieber [2000])

However,
the optimum d-dimensional cost for a linear arrangement can be
much larger than the optimum cost of a d-dimensional arrangement.



How good is the reduction?

Theorem
For any graph G = (V, E) and any injectionp : V — {1,...,k}¢,
there exists a bijectionq : V — {1,...,n} such that

> Vlav)—qw)l < Ofogn) Y~ lIp(v)—p(w)l; -

{v,w}cE {v.w}eE

There are pairs (G, p) for which this bound is tight.

Therefore a factor O(log n) is lost in this reduction!



Upper bound

Lemma

For any graph G = (V, E) and any injectionp : V — {1,...,k}¢
(where k,d € N), there exists a bijectionq : V — {1,...,n} such
that

> Yav) —qw)] < 32dinn 3" Ip(v) - pwW)l; -

{v,w}ecE {v.w}eE



Proof of upper bound (sketch)

» Consider cut coordinates with enough vertices on both sides
» If sufficiently many such coordinates exist, take smallest cut
» Continue with next dimension until each set is a singleton

don’t cut

Iteration 1 [teration 2

Yields balanced hierarchical decomposition; order vertices accordingly



Lower bound

Consider the d-dimensional hypercube graph (V¢, E?):
> Ve={1,... k9

> Ef={{xy} :x.ye V@, lIx—yll; =1}
The identity function is a d-dimensional arrangement of cost
Z{v,w}eEg v —w||; = |EZ| = d(k? — k9=1) < dn.

Lemma
Letd >2.Ifq: V¢ — {1,...,n} is any bijection, then

> {av) —qw)| >

d
{v.w}eEf

1-®7)(1-@"")dniogsn— %,



Spreading LP

min > v,w)
e={v,w}eE

st I(v,w) = Il(w,v) >0 (v,weV)
I(u,v)+I(v,w) > I(u,w) (u,v,we V)

V

S i, v) > W (UCV, veU)

uel

» Can be solved in polynomial time
(Even, Naor, Rao, Schieber [2000], Bornstein, Vempala [2004])
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st I(v,w) = Il(w,v) >0 (v,weV)
I(u,v)+I(v,w) > I(u,w) (u,v,we V)

V
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» Can be solved in polynomial time
(Even, Naor, Rao, Schieber [2000], Bornstein, Vempala [2004])

» LP value is a lower bound on the optimum cost of a
d-dimensional arrangement (Even [2011])

» Implies that the Even-Naor-Rao-Schieber algorithm is indeed
an O(log nloglog n)-approximation algorithm



Approximating any metric by a tree metric

Lemma (Fakcharoenphol, Rao and Talwar [2004])
LetG=(V,E)beagraph,n=|V|>2,and|:V x V a metric.
Then one can compute in polynomial time a

2-hierarchically well-separated tree (T, r, c)

such that V is the set of leaves of T,

and the induced tree metric I' satisfies:

(@) I'(v,w)>I(v,w) forallv,w e V, and

(b) Y F(v,w)<O(logn) > I(v,w).

{v,w}ecE {v,w}eE




O(log n)-approximation algorithm for d-dimensional arrangement

» Solve spreading LP — /
» Approximate / by tree metric — (T, /')
Order of the leaves of T in the
naturalway — q: V — {1,...,n}
Arrange the vertices according

to the Hilbert curve lemma.

v

v
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Proof of approximation ratio: Tu
» Let {v,w} € E and u the nearest common ancestor of v and w.
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» Solve spreading LP — /
» Approximate / by tree metric — (T, /')
Order of the leaves of T in the
naturalway — q: V — {1,...,n}
Arrange the vertices according

to the Hilbert curve lemma.
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Proof of approximation ratio: Tu
» Let {v,w} € E and u the nearest common ancestor of v and w.
» Due to the spreading constraints, there is an x € T, such that

I(v,x) > 1/|Tu| — 1. Then,

Vlav) —qw)l < ¥/ITul =1 < 4l(v,x) < 41 (v, x) < 8/ (v,w).

» Hence,
> Vlav)—aw)l < 8 Y I(v.w) < Ollogn) > I(v,w).
{v,w}eE {v.w}eE {v,w}eE

O



Discussion

Currently best approximation algorithm (see above)

finds a “high-dimensional embedding” (spreading metric),
approximates it by a tree metric (by recursive bipartitioning),
makes it a linear order,

v

v

v

v

makes it d-dimensional via a space-filling curve.
Poly-time but very slow. No fixed pins etc. O(log n)-approximation
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Some of the best heuristics in practice (d = 2) proceed as follows
(e.g., BonnPlace, Brenner, Struzyna, Vygen [2008]):

» finds a 2-dimensional embedding (quadratic placement)
» uses recursive quadrisection (Vygen [2005])
» concludes with legalization (Brenner, Vygen [2004])
Fast. Needs fixed pins for “spreading”. No approximation guarantee



Open problems

Bring
theory and practice
closer together




Open problems

Bring
theory and practice
closer together

Improve approximation guarantee (or prove hardness)
Obtain O(log n)-approximation without spreading LP
Generalize to practically more relevant problems

Prove approximation guarantee for a practical algorithm

v

v

v

v



