
DISS. ETH NO. 27975

Efficient Methods for Congruency-Constrained
Optimization

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

MARTIN NÄGELE

MSc ETH Mathematics, ETH Zurich

born on March 23, 1993
citizen of Austria

accepted on the recommendation of

Prof. Dr. Rico Zenklusen, examiner
Dr. Neil Olver, co-examiner

2021

Acknowledgment

First and foremost, I am deeply grateful to my advisor Prof. Dr. Rico Zenklusen
for his guidance and support over the course of my time as a PhD student in his group.
Working with him was inspiring in so many ways, and I profited enormously from
his profound knowledge and experience that he was always happy to share. Rico
definitely has a great share in bringing me to the point where I am now. Thank you
very much for all of that, Rico!

I am also very happy that I spent the last few years in a very enjoyable and
welcoming atmosphere within our group at the Institute of Operations Research.
Thanks go out to Adam, Alfonso, Andrea, Annette, Christian, Christoph, Christos,
David, Federica, Georg, Haris, Ingo, Ivan, Jörg, Joe, Kevin, Laura, Leon, Miriam,
Richard, Sabrina, Simon, Stephan, Stephen, Stefan, and Vera. I am delighted that
some of those friendships grew far beyond the academic world and will definitely
persist despite us probably taking very different paths in our future careers.

Finally, I am deeply indebted to my wife Pia. She was on my side celebrating
successes, she put up with me doing night shifts when deadlines approached and
things got tight, and she always knew when I needed support. Thank you so much
for all your contributions—words can barely describe how grateful I am for all you
did. I love you, Pia! ♥

Abstract

In this thesis, we study discrete combinatorial optimization problems with congruency constraints and
present new techniques for dealing with such constraint types.

Strong motivation for studying congruency constraints comes from a long-standing open question in
Integer Programming whether integer programs with constraint matrices with bounded subdeterminants
are efficiently solvable. An important special case thereof are congruency-constrained integer programs
min{c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn} with a totally unimodular constraint matrix T .
Such problems have been shown to be polynomial-time solvable for m = 2, which led to an efficient
algorithm for integer programs with bimodular constraint matrices, i.e., full-rank matrices whose n× n
subdeterminants are bounded by two in absolute value. Whereas these advances heavily relied on existing
results on well-known combinatorial minimum cut and circulation problems with parity constraints, new
approaches are needed beyond the bimodular case, i.e., m > 2. We make first progress in this direction
through several new techniques. In particular, we show how to efficiently decide feasibility of congruency-
constrained integer programs with a totally unimodular constraint matrix for m = 3. Furthermore, for
general m, our techniques also allow for identifying flat directions of infeasible problems, and deducing
bounds on the proximity between solutions of the problem and its relaxation.

In the second part of this thesis, we study a generalization of the aforementioned parity-constrained
minimum cut problems (and therefore also a generalization of other well-known variants of minimum
cut problems such as global minimum cuts and minimum s-t cuts), namely congruency-constrained
minimum cuts, where we consider cuts whose number of vertices is congruent to r modulo m, for some
integers r and m. We develop a new contraction technique inspired by Karger’s celebrated contraction
algorithm for minimum cuts, which, together with further insights, leads to a polynomial time randomized
approximation scheme for congruency-constrained minimum cuts for any constant modulus m. Instead
of contracting edges of the original graph, we use splitting-off techniques to create an auxiliary graph on
a smaller vertex set, which is used for performing random edge contractions. This way, a well-structured
distribution of candidate pairs of vertices to be contracted is obtained, where the involved pairs are
generally not connected by an edge. As a byproduct, our technique reveals new structural insights into
near-minimum odd cuts, and, more generally, near-minimum congruency-constrained cuts.

Finally, we present results on finding a spanning tree subject to constraints on the edges in a family
of cuts forming a laminar family of small width. Especially in the context of the Traveling Salesman
Problem (TSP), new techniques for finding spanning trees with well-defined properties, and in particular,
trees satisfying parity constraints on a chain of cuts, have been crucial in pushing a the analysis of a certain
class of approximation algorithms. Our main contribution is a new dynamic programming approach
where the value of a table entry does not only depend on the values of previous table entries, as it is
usually the case, but also on a specific representative solution saved together with each table entry. This
allows for handling a broad range of constraint types, including a relaxation of congruency constraints, or
upper and lower bounds on the number of edges in each cut. Concretely, we present a quasi-polynomial
time algorithm for the Minimum Chain-Constrained Spanning Tree Problem with an essentially best
possible guarantee. Furthermore, we show how parity constraints as used in the context of (path) TSP and
a generalization thereof can be handled, and discuss implications in this context.

Zusammenfassung

In dieser Arbeit betrachten wir diskrete kombinatorische Optimierungsprobleme mit einer Kon-
gruenzbedingung und präsentieren neue Techniken, um solche Bedingungen zu behandeln.

Motivation für das Betrachten von Kongruenzbedingungen stammt von einer seit langem offenen
Frage im Gebiet der Ganzzahloptimierung, nämlich ob ganzzahlige lineare Optimierungsprobleme, bei
denen die Matrix des Ungleichungssystems beschränkte Subdeterminanten hat, effizient lösbar sind. Ein
wichtiger Spezialfall dieser Problemklasse sind ganzzahlige lineare Optimierungsprobleme mit einer Kon-
gruenzbedingung von der Form min{c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn} mit einer vollständig
unimodularen Matrix T . Für solche Probleme wurde gezeigt, dass sie in Polynomialzeit lösbar sind falls
m = 2 gilt. Dies führte zu effizienten Algorithmen für ganzzahlige lineare Optimierungsprobleme, bei
denen die Matrix des Ungleichungssystems bimodular ist, d.h. dass die Matrix vollen Rang hat und
alle quadratischen Untermatrizen der Größe n× n im Absolutbetrag höchstens 2 sind. Während diese
Fortschritte auf bekannten Resultaten über minimale Schnitte und Zirkulationen mit Paritätsbedingungen
beruhen, sind für Resultate, die über den bimodularen Fall hinausgehen, d.h. m > 3 betrachten, neue
Herangehensweisen nötig. Wir erreichen erste Schritte in diese Richtung, indem wir mehrere neue
Techniken einführen. Konkret zeigen wir, wie wir effizient bestimmen können, ob ein ganzzahliges
lineares Optimierungsproblem mit einer vollständig unimodularen Matrix und einer Kongruenzbedingung
mit Modul m = 3 eine Lösung hat oder nicht. Desweiteren erlauben unsere Techniken für allgemeine m
flache Richtungen von Problemen die keine Lösung haben zu bestimmen, und wir können Schranken auf
den Abstand von Lösungen eines ganzzahligen linearen Optimierungsproblems mit einer Kongruenzbe-
dingung und einer Lösung der Relaxierung des Problems zeigen.

Im zweiten Teil dieser Arbeit behandeln wir eine Verallgemeinerung des zuvor erwähnten Problems,
minimale Schnitte mit Paritätsbedingungen zu finden; insbesondere also auch eine Verallgemeinerung
von anderen bekannten Varianten von Schnitt-Problemen wie globale minimale Schnitte und minimale
s-t Schnitte: Wir studieren minimale Schnitte mit einer Kongruenzbedingung, das heißt Schnitte die eine
Anzahl von Knoten enthalten, die kongruent zu r modulo m ist für bestimmte gegebene ganze Zahlen r
und m. Wir entwickeln einen neuen Kontraktionsalgorithmus, der durch einen bekannten Kontraktion-
salgorithmus von Karger zum finden von minimalen Schnitten inspiriert ist. Zusammen mit weiteren
Erkenntnissen erhalten wir für jeden beliebigen Modul m ein Polynomialzeit-Approximationsschema
zum finden von minimalen Schnitten, die eine Kongruenzbedingung mit Modul m erfüllen. Anstatt
– wie im Algorithmus von Karger – Kanten des gegebenen Graphen zu kontrahieren, verwenden wir
Splitting-Off-Techniken um einen Hilfsgraphen zu konstruieren, in dem wir sodann zufällige Kanten zur
Kontraktion wählen. Auf diesem Weg erhalten wir eine wohlstrukturierte Vertilung über Knotenpaare, die
wir im ursprünglichen Graph kontrahieren können, auch wenn sie dort nicht durch eine Kante verbunden
sind. Als zusätzliche Resultate enthüllt unsere Technik neue strukturelle Einblicke in minimale Schnitte,
die eine Kongruenzbedingung erfüllen, und insbesondere auch Einblicke in die Struktur von nur fast
minimalen solchen Schnitten.

Zu guter Letzt präsentieren wir Resultate zu Spannbäumen, die Bedingungen an die Kanten in einer
Familie von Schnitten, die eine laminare Familie von kleiner Breite bilden, erfüllen. Speziell im Kon-
text des Problems des Handlungsreisenden (TSP) haben Techniken zum Finden von Spannbäumen mit
wohldefinierten Eigenschaften an großer Bedeutung gewonnen. Idealerweise sollten die Spannbäume
Paritätsbedingungen an die Anzahl der Kanten in einer Kette von Schnitten erfüllen, um die Approxima-
tionsgarantien einer Klasse von Algorithmen zu verbessern. Unser Hauptbeitrag ist ein neuere Ansatz
der dynamischen Programmierung, bei dem ein Tabelleneintrag nicht wie üblich nur von den Werten
der vorhergehenden Tabelleneinträge abhängt, sondern auch von einer konkreten Lösung des Problems,
die der Tabelleneintrag repräsentiert. Diese Änderung erlaubt es uns, eine breite Palette an Bedingun-
gen behandeln zu können, insbesondere eine Relaxierung einer Kongruenzbedingung oder untere und
obere Schranken auf die Anzahl von Kanten, die einen Schnitt kreuzen. Konkret präsentieren wir einen
Algorithmus mit quasipolynomieller Laufzeit und de facto bestmöglicher Approximationsgarantie für das
Problem der minimalen Schnitte mit Schranken auf die Anzahl von Kanten, die Schnitte kreuzen, welche
eine Kette bilden. Außerdem zeigen wir, wie die Paritätsbedingungen, die im Zusammenhang mit TSP
und seiner Pfad-Version eine Rolle spielen, behandelt werden können, und wir diskutieren Implikationen
in diesem Zusammenhang.

This thesis includes material from the following publications:

1. Martin Nägele, Richard Santiago, and Rico Zenklusen. Congruency-constrained TU problems beyond
the bimodular case. To appear in SODA 2022. arXiv:2109.03148[math.OC] (2021).

2. Martin Nägele and Rico Zenklusen. A new contraction technique with applications to congruency-
constrained cuts. Proceedings of the 2019 Conference on Integer Programming and Combinatorial
Optimization (IPCO): 327–340 (2019). https://doi.org/gxkc

3. Martin Nägele and Rico Zenklusen. A new contraction technique with applications to congruency-
constrained cuts. Mathematical Programming 183(1): 455–481 (2020). https://doi.org/gxj6

4. Martin Nägele and Rico Zenklusen. A new dynamic programming approach for spanning trees with
chain constraints and beyond. Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA): 1550–1569, (2019). https://doi.org/gxj7

Results presented in this thesis have been part of projects supported by the Swiss National Science Foundation
grant 200021 184622 and the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 817750).

https://arxiv.org/abs/2109.03148
https://doi.org/gxkc
https://doi.org/gxj6
https://doi.org/gxj7

Contents

1 Introduction 1

2 Congruency-constrained TU problems beyond the bimodular case 5
2.1 Introduction . 5

2.1.1 Our results . 6
2.1.2 Related work . 8
2.1.3 Organization of the chapter . 8

2.2 Overview of our approach . 9
2.2.1 Decomposition, flat directions, and proximity . 9
2.2.2 Overview of our approach to R-CCTUF problems and Theorem 2.2 11

2.3 Proof and further implications of the decomposition lemma 17
2.3.1 An alternative approach toR-CCTUF problems with |R| = m−1: Proving Theorem 2.3 18
2.3.2 Bounded scalar products . 18
2.3.3 Proof of the decomposition lemma (Lemma 2.7) and Lemma 2.9 19

2.4 Solving base block problems . 26
2.4.1 Network matrices . 27
2.4.2 Transposes of network matrices . 30
2.4.3 Matrices stemming from particular constant-size matrices 37

2.5 Further details of our approach to R-CCTUF problems . 39
2.5.1 Seymour’s decomposition of TU matrices . 39
2.5.2 Patterns . 39
2.5.3 Proof of Theorem 2.22 . 53
2.5.4 Proof of Theorem 2.19 . 55
2.5.5 Proof of Theorem 2.23 . 55

2.A Detecting unboundedness of CCTU problems . 55

3 A new contraction technique with applications to congruency-constrained cuts 57
3.1 Introduction . 57

3.1.1 Our results . 59
3.1.2 Further discussion on related results . 60
3.1.3 Organization of the chapter . 60

3.2 An overview of our approach . 61
3.3 Good contraction distributions through splitting-off . 66

3.3.1 Proof of Theorem 3.9 . 67
3.4 Further structural properties and their implications . 69

3.4.1 Proof of Theorem 3.12 . 70

Contents

3.5 Weaker contraction distributions from standard splitting techniques 73

4 A new dynamic programming approach for spanning trees with chain constraints and beyond 77
4.1 Introduction . 77

4.1.1 Our results . 79
4.1.2 Organization of the chapter . 81

4.2 Overview of our approach for MCCST . 81
4.3 The dynamic programming approach for MCCST . 84

4.3.1 Brief overview to find cheap 1-integral solution following prior techniques 85
4.3.2 Toward general τ with connectivity patterns and resulting challenges 85
4.3.3 Efficiently extending subsolutions through relaxed connectivity requirements 86
4.3.4 Details of the dynamic programming approach for MCCST 88

4.4 Local correction steps for rounding procedures in {0, 1}-polytopes 90
4.4.1 Proof of Theorem 4.14 . 91
4.4.2 Further applications of alteration technique . 95
4.4.3 Alternative approach to avoid 1 + ε loss via techniques of Linhares and Swamy . . . 95

4.5 Extension to MLCST . 95
4.5.1 Dynamic programming in the laminar case . 97
4.5.2 Analyzing the DP . 99

4.6 Implications in Path TSP and beyond . 101
4.6.1 Christofides’ algorithm and Wolsey’s analysis . 101
4.6.2 Obtaining τ -odd points via our DP . 103

4.A Weakness of the natural relaxation . 108
4.B Analyzing the DP by backtracing OPT fails in the general case 110

Bibliography 113

Chapter 1

Introduction

The problems studied in this thesis lie in the research area of Discrete Optimization. In this area, problems
can generally be described as finding one element with certain properties among a finite number of options—
typically one that maximizes or minimizes some objective function—or deciding whether an element with
certain properties exists at all. In most interesting problems, the number of potential solutions is huge and they
are not given explicitly, so that generating and checking all of them is not a desirable option. Metaphorically,
this endeavour is often referred to as “finding the needle in the haystack”, thereby picturing how hopeless
such an approach would be in practice. Classical problems that fall into the category of discrete optimization
problems comprise all kinds of network problems like finding shortest paths from one vertex to another in a
graph, vehicle routing problems in which we have to design routes of cars to deliver certain goods, scheduling
problems to efficiently use resources or allocate people to tasks, clustering problems of grouping similar
objects, or integer linear programming problems that ask for integral solutions of linear inequality systems,
just to name a few. Already from this very limited set of examples, one can clearly see that many of these
problems are closely linked to or used for modelling real-world problems, and applications cover a vast
variety of tasks.

To judge the quality of algorithms designed to solve such problems, we measure their running time as
a function of the input size of an instance of the problem. We say that an algorithm is efficient its running
time can be bounded by a polynomial in the input size. Many classical problems admit deterministic efficient
algorithms, for example shortest path problems, matching problems, or flow problems. Still, there are also
large classes of problems for which efficient algorithms are not known to date. Somewhat surprisingly, even
though it is widely believed to be true, it is not known whether there exist problems that are intrinsically hard
and do not admit such efficient algorithms. In the context of decision problems (i.e., questions that can be
answered “yes” or “no”), this question is known as the P vs. NP problem: The complexity class NP contains
all decision problems for which a solution to a “yes”-instance can be verified in polynomial time, i.e., a proof
that the answer is “yes” can efficiently be checked. All problems mentioned earlier (or, to be precise, their
decision versions) fall into this category, but from an algorithms perspective, being in NP doesn’t buy much:
The question of how a solution to a “yes”-instance can be generated is still left open. Problems where this
step can be performed deterministically and efficiently, i.e., in polynomial time, belong to the subclass P of
NP. Using this terminology, the big open question is whether P = NP, i.e., whether all problems in NP
have efficient algorithms, or whether there exist problems that are in NP but not in P. While the common
belief is that P 6= NP, no attempts to prove either of the two outcomes of the question were successful so
far. This P vs. NP problem even appears on the list of Millennium Prize Problems published by the Clay
Mathematics Institute in May 2000, and a reward of one million US dollars is since waiting as an award for a
correct answer [Cla].

Interestingly, the problem class NP contains a subclass of problems, the so-called NP-complete problems,
which can be seen as “the most difficult” problems in NP in the following sense: If there was a polynomial-

1

1 Introduction

time algorithm for one of those problems, then there would be one for all problems in NP, i.e., we would
obtain P = NP. Consequently, based on the common belief that P 6= NP, we do not expect polynomial-time
algorithms for NP-complete problems. Still, this is not the end of the study of such problems. In case of
optimization problems, one way out is to look for efficient approximation algorithms, i.e., efficient algorithms
might not always find optimal solutions, but provide solutions that are guaranteed to be close to optimal, for
example with objective values off by at most a constant factor. Another option is to try to identify problem
parameters such that efficient algorithms exist once these parameters are fixed. Similarly, there might also
be constraints in the problems such that, once we allow some controlled violation of these constraints,
corresponding solutions can be found efficiently.

In this thesis, we study three problem families that can each be cast into one of the previously mentioned
categories: Congruency-constrained integer programming (Chapter 2), congruency-constrained minimum cuts
(Chapter 3), and chain-constrained spanning trees (Chapter 4). While the problems and their backgrounds are
introduced independently and in detail in the corresponding chapters, we want to highlight some connections
here, in particular the appearance of congruency constraints in all of the studied problems. Let us start by
stating a general integer programming problem of the form

min c>x
Ax ≤ b
x ∈ Zn

(1.1)

for a matrix A ∈ Zm×n, a right-hand side vector b ∈ Zm, and an objective vector c ∈ Zn. Integer
programming (or, more precisely, its decision version, where the question is whether a solution x ∈ Zn with
at most some given objective value exists) is one of the aforementioned NP-hard problems. Consequently, as
mentioned earlier, we do not expect efficient algorithms for solving such problems. The crux of such integer
programming problems really lies in the integrality constraint x ∈ Zn: Optimizing over the continuous
domain x ∈ Rn, so-called linear programming, can be done efficiently.

For integer programming, interesting problem subclasses that may or may not be polynomial-time solvable
can be obtained by constraining the matrix A. One well-studied subclass is obtained by requiring that A
is totally unimodular, i.e., requiring that all determinants of square submatrices are in {−1, 0, 1}. Totally
unimodular matrices are very structured, and it is well-known that so are the feasible regions of integer
programs with totally unimodular constraint matrices, which can be exploited to reduce solving such problems
to solving linear programs. Generalizing unimodularity, for ∆ ∈ Z>1, we consider so-called ∆-modular
matrices A: Matrices of full column rank n, and with all determinants of n × n submatrices bounded
by ∆ in absolute value. Nurtured by the insights on (totally) unimodular constraint matrices mentioned
above, and a positive result for ∆ = 2 (integer programs with bimodular constraint matrices) by Artmann,
Weismantel, and Zenklusen [AWZ17], it is conjectured that integer programming with ∆-modular constraint
matrices admits polynomial time algorithms if ∆ is bounded by a constant. In Chapter 2, we approach this
conjecture by studying an important subclass of such bounded subdeterminant integer programs, namely
congruency-constrained TU problems: We look at integer programming problems of the form given in (1.1),
assume that A is totally unimodular, and add a congruency-constraint of the form

γ>x ≡ r (mod m)

for some γ ∈ Zn,m ∈ Z>0, and r ∈ Z. By rewriting such a congruency constraint in the form γ>x+my = r
with an auxiliary integer variable y ∈ Z, one can readily see that congruency-constrained TU problems
are a special case of m-modular problems. Studying congruency constraints in this context is motivated
by the aforementioned result of Artmann, Weismantel, and Zenklusen [AWZ17], where parity-constrained
problems (i.e., congruency-constrained problems with modulus m = 2) play a central role. We present
an approach that, among others, allows to decide feasibility of congruency-constrained TU problems with
m = 3 in strongly polynomial time, thereby going beyond the previously studied parity-constraints and the
corresponding bimodular constraint matrices.

2

Chapter 3 studies a further special case of congruency-constrained TU problems that comes in a graph
theoretical setting: Congurency-constrained minimum cut problems. Here, given an undirected graph
G = (V,E), we want to find a minimum non-empty cut C (V among all cuts C that satisfy the congruency-
constraint |C| ≡ r (mod m) on the cardinality of C, and such that |δ+(C)| is minimized. This problem
is still NP-hard for general m, so we consider the setup where m is a constant. Here, polynomial-time
algorithms are known in the case where m is a prime power [NSZ19], but the complexity status is open for
general constant m. We present a quasi-polynomial randomized approximation scheme for general constant
m, i.e., an algorithm parametrized by ε > 0 that returns with high probability a feasible solution whose value
is within a factor of (1 + ε) of the actual optimal value, and runs in quasi-polynomial time for any constant
ε. Despite being neither a polynomial-time nor an exact algorithm, this result strengthens our belief that
congruency-constrained minimum cut problems should be solvable in deterministic polynomial time, and
motivates further research in that direction. Moreover, from a techniques point of view, it shows that the
classical and very simple randomized approach to minimum cut problems by Karger can be enhanced to also
work in a setting with congruency constraints.

Finally, Chapter 4 presents algorithms for constrained spanning tree problems, where we impose constraints
on a family of cuts that form a chain or a laminar family of small width. Our approach can handle cut
constraints of different types: For each cut in the family, we can for example impose upper and/or lower
bounds on the number of edges crossing the cut. Other variants include requiring either a large number of
edges, say at least τ many, or less than τ edges such that the number of edges satisfies a parity constraint.
Spanning trees satisfying such a type of parity constraints are of interest in the analysis of the classical
Christofides-Serdyukov algorithm for the famous Travelling Salesman Problem [Chr76] applied to its path
version. There, we are given n sites, metric distances, and two distinguished and different sites s and t
among the n given ones, and the goal is to find a shortest path from s to t that contains all n sites. The
classical approach starts with some short spanning tree, and then adds extra edges to guarantee that there
is a suitable path in the union of the spanning tree edges and the extra edges. Parity constraints naturally
come up in this setting because a (multi)set of edges contains a spanning s-t path if and only if the degrees
are even at all vertices except for s and t, and odd at s and t. Loosely speaking, the total length of the
necessary extra edges depends on the choice of the initial spanning tree, and it turns out that strong bounds
can be achieved if the tree has an odd number of edges in certain cuts that form a chain. With the above-
mentioned type of constraints (i.e., having an odd number of edges or at least τ many), we achieve a
polynomial-time (1.5 + 1/τ)-approximation algorithm for Path TSP, thereby almost matching the classical
Christofides-Serdyukov analysis that gives a 1.5-approximation for TSP, and the one by Zenklusen that gives
the same factor for Path TSP [Zen19]. Since very recently and through much more involved techniques, it is
known that for some δ > 10−36, this problem can even be approximated within a factor of 1.5− δ [KKG21].

Until not too long ago, congruency constraints typically appeared in the area of Combinatorial Optimization
only in the form of parity constraints, with examples including the minimum odd cut problem, packing odd
cycles in graphs, or submodular function minimization over odd or even cardinality sets. Only the study of
∆-modular integer linear programs and the connection to congruency-constrained TU optimization triggered
going to congruency constraints with more general modulus m. This includes submodular minimization with
congruency constraints [NSZ19] and much of the work presented in this thesis. For that reason, there are no
well-established techniques for dealing with congruency constraints yet. One contribution of the presented
work is to showcase approaches that help with such constraint types. Concretely, the results in this thesis
present several cases where guessing well-chosen parts or properties of a solution leads to simpler problems,
and in some cases allows for finding solutions to congruency-constrained problems through solving problems
without congruency constraints. Another paradigm that appears repeatedly is the so-called divide-and-conquer
approach: Carefully splitting a problem into two or more independent and smaller subproblems of the same
or a very similar type, solving these problems recursively, and finally combining solutions of the subproblems
to obtain a solution of the initial problem. Last but not least, we also exploit the power of linear relaxations of
the problems that we study. Opposed to formulations with integer variables, compact linear formulations can

3

1 Introduction

be solved efficiently, and even in cases where we obtain fractional solutions, we may be able to either round
the fractional solution to an integral one, or deduce properties of the instance that we may want to exploit.

In the interest of easier access to the results presented in this thesis, all three of the subsequent chapters
can be read independently, with problem settings and their backgrounds being introduced without assuming
knowledge from other chapters. Moreover, we again remark that the content of Chapter 2 is also available as
a preprint [NSZ21]; Chapter 3 appeared in [NZ20], with a short version presented in [NZ19a]; and Chapter 4
is an extended version of [NZ19b].

4

Chapter 2

Congruency-constrained TU problems beyond the
bimodular case

2.1 Introduction

Integer linear programs (ILPs) min{c>x : Ax ≤ b, x ∈ Zn} for A ∈ Zk×n, b ∈ Zk, and c ∈ Zn are one
of the most basic yet powerful discrete optimization problems. They are well-known to be NP-hard, and
extensive research is dedicated to identify efficiently solvable subclasses. One of the best known such classes
is when the constraint matrix A is required to be totally unimodular (TU), i.e., all square submatrices of A
have a determinant in {−1, 0, 1}. The class of totally unimodular ILPs still comprises a large number of
interesting and heavily studied problems, as for example network flow and cut problems, bipartite matching
problems, and many others.

Intriguingly, it is still badly understood what kind of generalizations of this classical result on ILPs with
totally unimodular constraint matrices are possible to obtain larger classes of efficiently solvable ILPs. In
particular, there is a long-standing open question on whether ILPs are efficiently solvable if their constraint
matrix is ∆-modular for constant ∆. Here, a matrix A ∈ Zk×n is ∆-modular for ∆ ∈ Z>0 if it has full
column rank n, and all n× n submatrices have determinants bounded by ∆ in absolute value.1 Besides TU
constraint matrices, progress has only been achieved for the bimodular case ∆ = 2, for which an efficient
algorithm was presented by Artmann, Weismantel, and Zenklusen [AWZ17]. A relevant special case of such
problems are Congruency-Constrained TU Problems.2

Congruency-Constrained TU Optimization (CCTU): Let T ∈ {−1, 0, 1}k×n be TU, b ∈ Zk,
c ∈ Zn, m ∈ Z>0, γ ∈ Zn, and r ∈ Z. The task is to show infeasibility, unboundedness, or find a
minimizer of

min
{
c>x

∣∣ Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn
}
.

Even for m = 2, CCTU problems capture classical combinatorial optimization problems like the min odd
cut problem. Moreover, there are reasons to believe that insights on CCTU problems may be key to make
further progress on the open question of bounded subdeterminant ILPs. For ∆ = 2, a result of Veselov
and Chirkov [VC09] implies that bimodular ILPs reduce to CCTU problems with m = 2, i.e., with parity
constraints (see [AWZ17]). The result in [VC09] does not extend to ∆ > 2, and it remains open whether
another reduction to CCTU problems may exist. Questions closely related to CCTU have also appeared in

1One may also consider totally ∆-modular matrices A, where all square subdeterminants of A are bounded by ∆ in absolute
value. The notion of ∆-modularity is more general in the sense that totally ∆-modular ILPs can be reduced to ∆-modular ILPs.

2A CCTU problem with modulus m can be written as an m-modular ILP by transforming the congruency constraint into a
linear equality constraint as follows. First append the row γ> to the matrix T and then append a column with zeros everywhere
except for the last entry (the one corresponding to the newly added row), which is set to m. Finally, the right-hand side of the newly
added constraint is set to r, the target residue.

5

2 Congruency-constrained TU problems beyond the bimodular case

recent progress of Fiorini, Joret, Weltge, and Yuditsky [FJWY21], who obtained an efficient algorithm for
totally ∆-modular ILPs with a constraint matrix having at most two non-zeros in each row. This algorithm
needs to compute certain circulations with parity constraints, which can be interpreted as CCTU problems
with a bounded number of additional constraints.

Moreover, we highlight that for prime numbers m, CCTU problems with modulus m are equivalent to
ILPs with a constraint matrix A that has full column rank and all of whose n× n subdeterminants are within
{0,±m}, in the sense that any of the two problems can be efficiently transformed to the other one.3

Typically, we consider a modulus m in CCTU problems that is constant, since CCTU with arbitrary
non-constant modulus m is NP-hard (one can, for example, model the minimum bisection problem).

2.1.1 Our results

We present the first progress towards solving CCTU problems beyond the parity-constrained case by
approaching the corresponding feasibility problem.

Congruency-Constrained TU Feasibility (CCTUF): Let T ∈ {−1, 0, 1}k×n be a totally unimod-
ular matrix, let b ∈ Zk, m ∈ Z>0, γ ∈ Zn, and r ∈ Z. The task is to show infeasibility or find a
solution of the system

Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn .

Our main result is the following.

Theorem 2.1. There is a strongly polynomial-time randomized algorithm for CCTUF problems with m = 3.

As we show in Section 2.A, being able to solve feasibility problems is also enough to detect unboundedness
of CCTU problems.4 One of the key ideas in the proof of Theorem 2.1 is to reduce a CCTUF problem to a
hierarchy of slightly relaxed congruency-constrained problems with totally unimodular constraint matrices
that we call R-CCTUF problems, and which we define as follows.

R-Congruency-Constrained TU Feasibility (R-CCTUF): Let T ∈ {−1, 0, 1}k×n be a totally
unimodular matrix and let b ∈ Zk. Additionally, let m ∈ Z>0, γ ∈ Zn, and R ⊆ {0, . . . ,m − 1}.
The task is to show infeasibility or find a feasible solution of the system

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn .

Here, the constraint γ>x ∈ R (mod m) is satisfied if and only if there exists an r ∈ R such that γ>x ≡
r (mod m). We call R the set of target residues. Clearly, every CCTUF problem is an R-CCTUF problem
with R = {r}. Intuitively, the larger the set R of target residues is, the easier the corresponding problem
gets—in the extreme case of |R| = m, the congruency constraint is trivially fulfilled by any solution,
and simply finding a solution of the TU problem without congruency constraint is enough. Additionally,
R-CCTUF problems can always be reduced to several problems of the same type with a smaller set of target
residues. In particular, any R-CCTUF problem can be reduced to |R| many CCTUF problems, namely one
for each r ∈ R. Our new progress for R-CCTUF problems is going two steps into the hierarchy if the
modulus m is a prime number, i.e., we can solve feasibility problems with |R| ≥ m− 2.

Theorem 2.2. There is a strongly polynomial-time randomized algorithm for R-CCTUF problems with
constant prime modulus m and |R| ≥ m− 2.

3The reduction mentioned in Footnote 2 from a CCTU problem to a ∆-modular ILP shows one direction. The other one follows
by an analogous reduction to the one used in the bimodular case [AWZ17].

4Analogous to linear and integer programming, we call a CCTU unbounded if it is possible to achieve arbitrarily good objective
values. Hence, having an unbounded feasible region does not imply unboundedness of the problem.

6

2.1 Introduction

Observing that for m = 3, an R-CCTUF problem with |R| = m − 2 is in fact a CCTUF problem,
Theorem 2.1 immediately follows from Theorem 2.2. Our proof of Theorem 2.2 is inspired by methods
developed in [AWZ17] for bimodular integer programs, but goes significantly beyond the strategy and
techniques employed there. In particular, we also decomposeR-CCTUF problems into smaller ones following
Seymour’s decomposition of TU matrices, but we need methods that allow for progressing in the hierarchy of
R-CCTUF problems introduced above. This step requires us to have prime modulus due to an application of
the Cauchy-Davenport Inequality. The decomposition approach deterministically reduces general R-CCTUF
problems to problems with so-called base-block constraint matrices. While parity-constraints are fairly
common in Combinatorial Optimization and known techniques could be leveraged in [AWZ17] to solve
parity-constrained base block problems, we present new approaches for m > 2. In particular, we create
new links to recent advances on congruency-constrained submodular optimization and exact weight flow
problems. The only known algorithm for exact weight flow problems is randomized, which is why we obtain
a randomized algorithm as stated in Theorem 2.2.5

Interestingly, focusing on the case of |R| = m − 1 only, our techniques lead to a substantially simpler
approach for R-CCTUF problems that does not need to rely on decomposition methods and can therefore
avoid randomization and the prime modulus requirement, resulting in the following theorem.

Theorem 2.3. There is a strongly polynomial-time algorithm to solve R-CCTUF problems with |R| = m−1.

Form = 2, Theorem 2.3 states that feasibility of parity-constrained TU problems can be decided efficiently.
This is a special case of bimodular IP feasibility, which has been known to admit polynomial time algorithms
since the work of Veselov and Chirkov [VC09]. Let us also remark that for general m, the congruency
constraint inR-CCTUF problems with |R| = m−1 can be rewritten in the form γ>x 6≡ r (mod m) for some
residue r. Such constraint types and generalizations thereof have been studied in different settings already, in
particular in the context of minimizing submodular functions (see Goemans and Ramakrishnan [GR95], and
Grötschel, Lovász, and Schrijver [GLS93]).

Our approach for Theorem 2.3 is derived from interesting structural properties of R-CCTUF problems that
are likely to be of independent interest, and two of which we want to highlight here. One is concerned with
flat directions of the underlying polyhedron, i.e., vectors d ∈ Zn \ {0} for which the width max{d>x : x ∈
Zn, Tx ≤ b} −min{d>x : x ∈ Zn, Tx ≤ b} is small. Prior to our work, results of this type have only been
known for very restricted cases. In particular, it is proved in Artmann’s PhD thesis [Art20, Theorem 3.4] that
for CCTUF problems restricted to modulus m = 3 and to base block constraint matrices, it holds that if the
problem is infeasible, then a row of the constraint matrix is a flat direction of width 1. Our techniques show,
through an arguably much simpler approach, that analogous results hold for arbitrary moduli m and CCTUF
problems without any further restriction on the constraint matrix. Moreover, our result also generalizes to
R-CCTUF problems, providing the following bound on the width, which can easily be seen to be tight.

Theorem 2.4. For every R-CCTUF problem, either there is a constraint matrix row that is a flat direction of
the underlying polyhedron of width at most m− |R| − 1, or a feasible solution of the R-CCTUF problem
can be found in strongly polynomial time.

Finally, our techniques also lead to proximity results. We call the problem obtained from CCTU, CCTUF,
or R-CCTUF problems after dropping the congruency constraint the relaxation of the respective problem.
Note that this relaxation is not a linear relaxation in the usual sense as we still require integral solutions,
but is nonetheless closely related to it due to the totally unimodular constraint matrices. Prior knowledge
of proximity results in this context have been very limited. In particular, it was known [Art20, Lemma 3.3]
that given a feasible CCTU problem with m = 3, then for any vertex y ∈ Zn of the underlying polyhedron
{x ∈ Rn : Tx ≤ b}, there exists a feasible solution x of the CCTU problem such that ‖y − x‖∞ ≤ 2. While
the method used in [Art20] is specific for the m = 3 case, our techniques lead to the following more general

5In this context, we consider a randomized algorithm to be one that always correctly detects infeasibility of a problem, and finds
a solution of a feasible problem with high probability 1− 1/n, where n is the number of variables.

7

2 Congruency-constrained TU problems beyond the bimodular case

result for arbitrary modulus m and, again, the more general congruency-constraint type. Here, R-CCTU
denotes the optimization versions of R-CCTUF problems, analogous to the relation between CCTU and
CCTUF problems. In other words, anR-CCTU problem is a CCTU problem where the congruency-constraint
γ>x ≡ r (mod m) for a single residue r is replaced by γ>x ∈ R (mod m) for a set R of residues.

Theorem 2.5. Consider a feasible R-CCTU problem with modulus m.

(i) For any x0 feasible for the relaxation, there is an x feasible for the problem with ‖x−x0‖∞ ≤ m−|R|.
(ii) For any x0 optimal for the relaxation, there is an x optimal for the problem with ‖x−x0‖∞ ≤ m−|R|.

Moreover, in (i) and (ii), given x0 and any feasible or optimal solution of the R-CCTU problem, respectively,
a solution x with the stated properties can be found in strongly polynomial time.

2.1.2 Related work

The maximum absolute value ∆ of a subdeterminant of the constraint matrix is a parameter that has received
significant attention in integer programming recently. The closely related problem class of congruency-
constrained combinatorial optimization problems has been investigated already in the early 80’s for the
parity-constrained case, and several further advances have been made since. We briefly recap prior work
linked to these areas.

A problem that can be cast as a bounded subdeterminant integer program, has gained substantial interest
recently [BFMR14; CFHJW20; CFHW21], and was resolved in [FJWY21], is the stable set problem in
graphs G with bounded odd cycle packing number ocp(G), i.e., graphs for which the maximum number
of disjoint odd cycles is bounded. The incidence matrix of such a graph has maximum subdeterminant
2ocp(G) (see, e.g., [GKS95]). Several further interesting results link the parameter ∆ to properties of integer
programs, their relaxations, and underlying polyhedra (see, e.g., [BDEHN14; EV17; LPSX20; LPSX21;
PSW21; Tar86] and references therein). Furthermore, there has been interesting recent progress on the
problem of approximating the largest subdeterminant of a matrix (see Di Summa, Eisenbrand, Faenza, and
Moldenhauer [DEFM15], and Nikolov [Nik15]). Also, IPs with more constrained subdeterminant structures
that admit efficient algorithms for integer programming were considered [VC09; AEGOVW16; GSW21].

One of the most classical congruency-constrained combinatorial optimization problems is the minimum
odd cut problem, which asks to find a minimum cut among all cuts with an odd number of vertices. Padberg
and Rao [PR82] presented a first efficient method for the minimum odd cut problem. Subsequently, Barahona
and Conforti [BC87] showed that efficient minimization is also possible over all cuts with an even number of
vertices. Later works by Grötschel, Lovász, and Schrijver [GLS84], and by Goemans and Ramakrishnan
[GR95] generalized these results to the minimization of submodular functions. More precisely, the approach
of [GR95] allows for minimizing over so-called triple families, which includes the case of cuts C ⊆ V of
cardinality not congruent to r modulom, for any integers r andm. Nägele, Sudakov, and Zenklusen [NSZ19]
showed that a submodular function can also be efficiently minimized over sets of cardinality r (mod m), for
any integer m that is a constant prime power. For the special case of minimum cuts, Nägele and Zenklusen
[NZ20] presented a randomized PTAS for finding a minimum cut among all cuts containing r (mod m)
many vertices, for any constant m. The latter result is also presented in Chapter 3 of this thesis.

2.1.3 Organization of the chapter

In Section 2.2, we present the key ideas and techniques that lead to our new results. In particular, Section 2.2.1
presents a decomposition lemma, a crucial ingredient that is central to all our results, and we showcase its
strength by readily deducing from it our flatness and proximity results (Theorems 2.4 and 2.5). Subsequently,
Section 2.2.2 gives an overview of our approach to CCTUF problems and the proof of Theorem 2.2.

A proof of the decomposition lemma as well as more applications thereof (in particular, Theorem 2.3),
are given in Section 2.3, while Sections 2.4 and 2.5 fill in details and present the missing proofs from
Section 2.2.2.

8

2.2 Overview of our approach

2.2 Overview of our approach

2.2.1 Decomposition, flat directions, and proximity

One technique that we employ repeatedly is a careful decomposition of vectors into well-structured ones. In
particular, we often apply such decomposition to solutions of CCTUF or R-CCTUF problems, to obtain a
structured sum of other vectors. A key role in this decomposition is taken by elementary vectors, which we
define as follows.

Definition 2.6. Let T ∈ Zk×n be a totally unimodular matrix.

(i) A vector d ∈ Zn is TU-appendable to T if the matrix
(
T
d>
)

is totally unimodular.
(ii) A vector x ∈ Zn is elementary w.r.t. T if d>x ∈ {−1, 0, 1} for all d that are TU-appendable to T .

Concretely, we obtain the following decomposition lemma.

Lemma 2.7 (Decomposition lemma). Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix, let b ∈ Zk,
and let x0, y ∈ Zn be two solutions of the system Tx ≤ b. Then, we can determine in strongly polynomial
time y1, . . . , yn ∈ Zn and λ1, . . . , λn ∈ Z≥0 such that y − x0 =

∑n
i=1 λiy

i with the following properties:

(i) y1, . . . , yn are elementary with respect to T .
(ii) For µ1, . . . , µn ∈ Z≥0 with µi ≤ λi for all i ∈ [n], the vector ỹ := x0 +

∑n
i=1 µiy

i satisfies T ỹ ≤ b.

In words, the above decomposition lemma allows for efficiently writing a solution y to the relaxation
of a CCTUF (or, more generally, also R-CCTUF) as a sum of another solution x0 and a combination of
elementary vectors yi that can moreover be freely combined to obtain other solutions to the relaxation. A
formal proof of this decomposition lemma is given in Section 2.3.3.

One of our applications of the decomposition lemma is to bound the search space in which we need to
look for solutions of R-CCTUF problems. Note that given a solution x0 of the relaxation of an R-CCTUF
problem and any feasible R-CCTUF solution y, i.e., one that also satisfies the congruency constraint, as
well as a TU-appendable row d>, Lemma 2.7 allows for efficiently decomposing y − x0 into a sum of the
form

∑n
i=1 λiy

i with
∑n

i=1 λi ≥ |d>(y− x0)|. Hence, if |d>(y− x0)| is large, the sum
∑n

i=1 λiy
i has many

terms, and due to point (ii), there are many options to build new solutions x0 +
∑n

i=1 µiy
i of the relaxation

of the R-CCTUF problem by removing an arbitrary subset of the terms (i.e., choosing µi ∈ {0, . . . , λi}).
Thus, in order to obtain a new feasible solution for the R-CCTUF problem, we have to make sure that
γ>x0 +

∑n
i=1 µiγ

>yi ∈ R (mod m), i.e., that we hit a feasible residue again. The following lemma shows
that there always exists such a choice with

∑n
i=1 µi ≤ m− |R|.

Lemma 2.8. Let m ∈ Z>0, R ⊆ {0, . . . ,m− 1}, and r1, . . . , r` ∈ Z with
∑

i∈[`] ri ∈ R (mod m). If there
is no interval I = {i1, . . . , i2} with i1, i2 ∈ [`] and i1 < i2 such that

∑
i∈[`]\I ri ∈ R, then ` ≤ m− |R|.

Proof. Assume for the sake of deriving a contradiction that there is no interval I ⊆ {1, . . . , `} such that∑
i∈[`]\I ri ∈ R, but ` ≥ m− |R|+ 1. Consider the ` integers s0 = 0, s1 = r1, . . . , s`−1 = r1 + . . .+ r`−1.

Observe that sj /∈ R (mod m) for all j ∈ [` − 1]; for otherwise, there is an interval I = {j + 1, . . . , `}
for some j ∈ [` − 1] such that

∑
i∈[`]\I ri = sj ∈ R (mod m), contradicting the assumption. Thus,

sj ∈ {0, . . . ,m − 1} \ R (mod m) for j ∈ [` − 1]. Hence, because ` ≥ m − |R| + 1, we have by
the pigeonhole principle that there exist distinct j1, j2 ∈ [` − 1] such that sj1 ≡ sj2 (mod m). Thus,
I = {j1 + 1, . . . , j2} is an interval with

∑
i∈[`]\I ri =

∑
i∈[`] ri − (sj2 − sj1) ≡

∑
i∈[`] ri ∈ R (mod m),

again contradicting the assumption and hence completing the proof.

Indeed, Lemma 2.8 shows that as long as the sum

γ>y1 + . . .+ γ>y1︸ ︷︷ ︸
λ1 many terms

+ . . .+ γ>yn + . . .+ γ>yn︸ ︷︷ ︸
λn many terms

∈ R− γ>x0 (mod m)

9

2 Congruency-constrained TU problems beyond the bimodular case

has at least m−|R|+ 1 many terms, there is a subset of consecutive terms that can be removed while keeping
the total residue inside the setR−γ>x0. Iterating the procedure eventually leaves us with terms corresponding
to a solution of the form ỹ := x0 +

∑n
i=1 µiy

i with
∑n

i=1 µi ≤ m − |R|. Observe that this solution ỹ is
close to the solution x0 of the relaxation of the initial problem in the sense that |d>(ỹ − x0)| ≤ m − |R|,
which can be used as a bound for the search space when looking for feasible solutions. Beyond that, the idea
described above is also at the heart of our flatness and proximity results (Theorems 2.4 and 2.5).

One caveat in the above construction is that a direct realization of the approach suggested by Lemma 2.8
may have a worst-case running time polynomial in m, which is not polynomial in the input size of the
R-CCTUF problem when m is part of the input. Interestingly, given a sum

∑
ri that lies in R (mod m) for

residues ri ∈ Z and a set R ⊆ {0, . . . ,m− 1}, it is generally NP-hard to find a smallest possible number
of terms ri that also sum to a residue in R modulo m, as can be seen by a reduction from the Subset Sum
problem, for example. Nonetheless, we are able to get the following constructive result by exploiting that
the sum

∑n
i=1 λiy

i contains no more than n distinct vectors yi, and the fact that we do not need to find a
shortest partial sum with residue in R− γ>x0 but only one with at most m− |R| terms. Its formal proof is
postponed to Section 2.3.3.

Lemma 2.9. Consider an R-CCTUF problem with modulus m, constraint matrix T , a feasible solution y,
and a solution x0 of its relaxation. We can obtain in strongly polynomial time a feasible solution ỹ such that

(i) for any d ∈ Zn that is TU-appendable to T , we have d>(ỹ − x0) ≤ m− |R|, and
(ii) for any c ∈ Zn such that x0 minimizes c>x over the relaxation of the R-CCTUF problem, c>ỹ ≤ c>y.

Note that point (ii) adds an additional property on the relation of the costs of the three vectors x0, y, and ỹ
that is useful in optimization settings. To showcase two concrete applications of Lemma 2.9 in this overview,
we show how Lemma 2.9 readily implies our flatness and proximity results, i.e., Theorems 2.4 and 2.5. We
start by showing Theorem 2.4, which is a consequence of the following statement.

Lemma 2.10. Consider an R-CCTUF problem, and let d>x ≤ β be one of its constraints. Either

(i) d is a flat direction of width at most m− |R| − 1 for the underlying polyhedron, or
(ii) the problem is feasible if and only if the R-CCTUF problem without the constraint d>x ≤ β is.

In case (ii), a solution of the initial problem can be obtained in strongly polynomial time from any solution of
the initial problem without the constraint d>x ≤ β.

Proof. Assume that d is a direction of width at least m− |R|, and let x0 be feasible for the relaxation of the
R-CCTUF problem such that d>x0 ≤ β −m+ |R|. It is enough to show that we can in strongly polynomial
time obtain a feasible solution of the initial problem, assuming that we are given a feasible solution y of the
problem without the constraint d>x ≤ β. Applying Lemma 2.9 in this setting, we get that given y, we can in
strongly polynomial time obtain another feasible solution ỹ such that d>ỹ ≤ d>x0 +m− |R| ≤ β, i.e., a
solution that also satisfies the constraint d>x ≤ β. This proves the desired statement.

Proof of Theorem 2.4. Consider an R-CCTUF problem and one of its constraints d>x ≤ β. Using a result
of Tardos [Tar86], we can in strongly polynomial time determine whether this constraint identifies a direction
of width at most m− |R| − 1 of the underlying polyhedron (namely, by optimizing the objectives d>x and
−d>x over the polyhedron). If not, by Lemma 2.10, the constraint can be dropped without changing the
feasibility status. Iterating over all constraints, we either find a flat direction, or we end up with a problem
without inequality constraints that is trivially feasible, thus implying that the initial problem was feasible as
well. In that case, a solution of the initial problem can be constructed within the desired running time from a
solution of the final problem through Lemma 2.10.

Let us remark that the width m − |R| − 1 of flat directions in infeasible problems is best possible for
any size of R, as can be seen from the infeasible problems given by {x ∈ Z : 0 ≤ x ≤ m− `− 1, x ∈ R`
(mod m)} with R` = {m− `, . . . ,m− 1} for ` ∈ {1, . . . ,m− 1}.

10

2.2 Overview of our approach

Finally, we also show how Lemma 2.9 implies Theorem 2.5. More precisely, we prove the following
generalization, from which Theorem 2.5 follows immediately.

Theorem 2.11. Consider a feasible R-CCTU problem with modulus m and constraint matrix T .

(i) For any feasible solution x0 of the relaxation, there is a feasible solution x of the R-CCTU problem
such that for every vector d that is TU-appendable to T, we have d>(x− x0) ≤ m− |R|.

(ii) For any optimal solution x0 of the relaxation, there is an optimal solution x of the R-CCTU problem
such that for every vector d that is TU-appendable to T, we have d>(x− x0) ≤ m− |R|.

Moreover, in (i) and (ii), given x0 and any feasible or optimal solution of the R-CCTU problem, respectively,
a solution x with the stated properties can be found in strongly polynomial time.

Proof. For part (i), apply Lemma 2.9 to the given problem with feasible solutions y and x0 of the problem
and its relaxation, respectively, to obtain a feasible solution ỹ. Property (i) in Lemma 2.9 states that
d>(ỹ − x0) ≤ m − |R| for any d ∈ Zn that is TU-appendable to the constraint matrix. Moreover, if y is
given, we can also obtain ỹ in strongly polynomial time by Lemma 2.9, hence ỹ has the properties of the
solution x claimed by Theorem 2.11.

To also deduce part (ii), we proceed identically, but take x0 to be an optimal solution of the relaxation
with respect to the minimization objective c>x, and y an optimal solution to the problem. In that case, on top
of what we derived before, ỹ satisfies c>ỹ ≤ c>y by property (ii) in Lemma 2.9. Thus, because y is optimal,
this must be an equality and ỹ is optimal, as well.

Proof of Theorem 2.5. Note that for every i ∈ [n], the unit vector ei and its negative −ei are TU-appendable
to every totally unimodular matrix. Thus, the solutions guaranteed by Theorem 2.11 satisfy

‖x− x0‖∞ = max
i∈[n]

max{e>i (x− x0),−e>i (x− x0)} ≤ m− |R| .

We postpone further applications of the decomposition lemma to Section 2.3, and continue with an
overview of our approach to deal with R-CCTUF problems. The above discussion aimed at exemplifying
how the decomposition lemma can be employed, and should help to better understand further implications,
including settings that we state in the following overview of how to deal with R-CCTUF problems.

2.2.2 Overview of our approach toR-CCTUF problems and Theorem 2.2

When approaching R-CCTUF problems of the form

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn

with constant prime modulus m, we follow the general idea of decomposing the problem into smaller ones
by applying Seymour’s TU decomposition to the constraint matrix T . Exploiting Seymour’s decomposition
to approach problems that involve TU matrices is a standard approach that has been successfully used in
a variety of contexts (see for example [DK14; AWZ17; AF21]). In particular, this includes the solution to
parity-constrained TU problems presented in [AWZ17]. However, going to congruency-constraints with
modulus 3 or larger creates substantial extra hurdles beyond prior techniques. For completeness and clear
references, we repeat Seymour’s TU decomposition framework here, which breaks a TU matrix into smaller
ones using so-called 1-, 2-, and 3-sums, and pivoting operations, which are defined as follows.

Definition 2.12 (1-, 2-, and 3-sums). Let A ∈ ZkA×nA , B ∈ ZkB×nB , e ∈ ZkA , f ∈ ZnB , g ∈ ZkB ,
h ∈ ZnA .

(i) The 1-sum of A and B is A⊕1 B := (A 0
0 B).

(ii) The 2-sum of
(
A e

)
and

(
f>

B

)
is
(
A e

)
⊕2

(
f>

B

)
:=
(
A ef>

0 B

)
.

(iii) The 3-sum of
(
A e e
h> 0 1

)
and

(
0 1 f>

g g B

)
is
(
A e e
h> 0 1

)
⊕3

(
0 1 f>

g g B

)
:=
(

A ef>

gh> B

)
.

11

2 Congruency-constrained TU problems beyond the bimodular case

Definition 2.13 (Pivoting). Let C ∈ Zk×n, p ∈ Zn, q ∈ Zk, and ε ∈ {−1, 1}. The matrix obtained from
pivoting on ε in T :=

(
ε p>

q C

)
, i.e., pivoting on the element T11 of T , is pivot11(T) :=

(
−ε εp>

εq C−εqp>

)
. More

generally, pivotij(T) for indices i and j such that Tij ∈ {−1, 1} is obtained from T by first permuting rows
and columns such that the element Tij is permuted to the first row and first column, then performing the
above pivoting operation on the permuted matrix, and finally reversing the row and column permutations.

It is well-known that a 1-, 2-, and 3-sum is totally unimodular if and only if the two summands it is
obtained from are, and a pivoted matrix is totally unimodular if and only if the original matrix is. Seymour’s
TU decomposition theorem states that a TU matrix is either very structured, or it can be decomposed using
1-, 2-, and 3-sums, or pivoting steps. We use the following variation of the decomposition theorem, which
provides some extra guarantees on the dimensions of the matrices appearing in the decomposition. It readily
follows from classical statements of Seymour’s decomposition for TU matrices (see Section 2.5.1 for details).

Theorem 2.14 (Seymour’s TU decomposition). Let T ∈ Zk×n be a totally unimodular matrix. Then, one of
the following cases holds.

(i) T or T> is a network matrix.
(ii) T is, possibly after iteratively applying the operations of

• deleting a row or column with at most one non-zero entry,
• deleting a row or column that appears twice or whose negation also appears in the matrix, and
• changing the sign of a row or column,

equal to one of (1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

)
and

(
1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

)
.

(iii) T can, possibly after row and column permutations, be decomposed into a 1-, 2-, or 3-sum of totally
unimodular matrices with nA, nB ≥ 2.

(iv) T can, after pivoting once and possibly performing row and column permutations, be decomposed into
a 3-sum of totally unimodular matrices with nA, nB ≥ 2.

Additionally, we can in time poly(n) decide which of the cases holds and determine the involved matrices.

Cases (i) and (ii) are the cases where T is a so-called base block matrix. We exploit the structure of those
matrices to reduce CCTUF problems with such a constraint matrix T to certain combinatorial optimization
problems with congruency constraints. In particular, if T is a network matrix, the corresponding problem
can be interpreted as a congruency-constrained circulation problem. Here, we exploit a connection to exact
weight matching problems [CGM92] that results in an efficient randomized procedure. For T being the
transpose of a network matrix, we present a reduction to a congruency-constrained submodular minimization
problem, which can be solved (whenever m is a prime power) by a recent algorithm by Nägele, Sudakov,
and Zenklusen [NSZ19]. We expand on these connections in Section 2.4, thereby obtaining the following
statement on the corresponding feasibility problems.

Theorem 2.15. Let T be a TU matrix for which case (i) or (ii) in Theorem 2.14 holds. There is a strongly
polynomial time randomized algorithm to solve CCTUF problems with constraint matrix T and constant
prime power modulus.

In the cases where the constraint matrix T admits a decomposition as a 1-, 2-, or 3-sum, i.e., case (iii) of
Theorem 2.14, we can write T =

(
A ef>

gh> B

)
. If T is a 2-sum, g and h will be zero vectors; if T is a 1-sum,

also e and f will be zero vectors. This matrix decomposition splits the variables x, the right-hand sides b,
and the residue vector γ into two parts accordingly. The R-CCTUF problem can then be rewritten as the

12

2.2 Overview of our approach

problem of finding a feasible solution of the system(
A ef>

gh> B

)
·
(
xA
xB

)
≤
(
bA
bB

)
γ>AxA + γ>BxB ∈ R (mod m)

xA ∈ ZnA , xB ∈ ZnB .

(2.1)

For any fixed values of α := f>xB and β := h>xA, the above problem can be split into the two almost
independent CCTUF problems

AxA ≤ bA − αe
h>xA = β

γ>AxA ≡ rA (mod m)

xA ∈ ZnA

and

BxB ≤ bB − βg
f>xB = α

γ>BxB ≡ rB (mod m)

xB ∈ ZnB

, (2.2)

where we would like to find solutions xA and xB for residues rA and rB such that rA + rB ∈ R (mod m).
Hence, this desired relation between the target residues rA and rB is the only dependence between the two
problems once α and β are fixed. We refer to the problem on the left as the A-problem and the problem on
the right as the B-problem.

A solution of the initial R-CCTUF problem can only exist for pairs (α, β) ∈ Z2 for which both the A- and
the B-problem are feasible. We denote this set by Π ⊆ Z2. In Section 2.5, we will see that Π is a polyhedron
that can be obtained by essentially projecting feasible solutions of the relaxation of our R-CCTUF problem
down to the (α, β)-space. This will allow us to deduce structural properties of Π. For now, we aim at
narrowing down the values of (α, β) ∈ Π that we have to consider to find a feasible solution. To this end, we
use the following Lemma.

Lemma 2.16. Consider an R-CCTUF problem of the form given in (2.1). We can in strongly polynomial
time obtain `i, ui ∈ Z with ui − `i ≤ m − |R| for i ∈ {0, 1, 2} such that if the R-CCTUF problem has a
solution, then it has one with `0 ≤ α + β ≤ u0, `1 ≤ α ≤ u1, and `2 ≤ β ≤ u2, where α = f>xB and
β = h>xA.

Note that α, β, and α + β are scalar products of a solution of (2.1) with suitably chosen row vectors.
We show in Section 2.3.2 that those rows are all TU-appendable to the constraint matrix, thus enabling the
application of techniques from the previous section to prove existence of solutions with those scalar products
bounded to the desired range. Here, as a consequence of Lemma 2.16, we can restrict our attention to O(m2)
many pairs (α, β) in the narrowed set

Πnarrowed := Π ∩
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

We will later see that properties of Π imply that we can choose `i, ui such that we even have

Πnarrowed =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

One natural attempt at this point would be to explicitly try all O(m4) remaining combinations of rA, rB ,
and (α, β) ∈ Πnarrowed, and recurse on the corresponding (now independent) A- and B-problems in (2.2).
If we could guarantee that both problems had about the same number of variables in each such step (more
precisely, at least a constant fraction of the original variables), this would lead to a polynomial time procedure
at least for constant moduli m: The number of variables would go down by roughly a factor of two in every
step; hence we would fall back to cases (i) or (ii) of Theorem 2.14 after O(log n) many iterations at the
latest, each increasing the number of subproblems by a factor of O(m4), giving a total running time bound of

13

2 Congruency-constrained TU problems beyond the bimodular case

mO(logn).6 Unfortunately, the guarantees of Theorem 2.14 are much weaker: We can only guarantee that
both A and B have at least two columns, and if their sizes happen to be imbalanced in most decomposition
steps, the above argument fails.

Still, we can always solve the relaxations of both problems for all (α, β) ∈ Πnarrowed. Without loss of
generality, let us assume that the B-problem is the smaller among the A- and the B-problem (with respect
to the number of columns in its constraint matrix, i.e., the number of variables). Because B has at most
half the number of columns compared to T , it turns out that we can afford (in terms of running time) to
recursively call Theorem 2.2 on an R-CCTUF version of the B-problem (i.e., the B-problem in (2.2) with
the congruency constraint replaced by γ>BxB ∈ RB (mod m), for sets RB of the same size as the set R in
the original problem). Concretely, for any fixed (α, β) ∈ Πnarrowed, at most m− |R|+ 1 such recursive calls
suffice to determine up to m− |R|+ 1 different feasible residues of the B-problem (or fewer, if there are
less than that many). We elaborate on why this is enough in what follows.

Let π : Πnarrowed → 2{0,...,m−1} be the function assigning to any (α, β) ∈ Πnarrowed the set π(α, β) ⊆
{0, . . . ,m − 1} of residues rB ∈ {0, 1, . . . ,m − 1} for which the B-problem is feasible. We call π a
narrowed pattern associated to the problem given in (2.1). Note that this pattern depends on the 3-sum
decomposition and the choice of `i and ui in Lemma 2.16, and hence may not be unique. Also, we remark
that a narrowed pattern can be seen as a restriction (to the narrowed domain Πnarrowed) of a global pattern that
maps any (α, β) ∈ Π to the corresponding set of feasible residues of the B-problem.

We can easily obtain a feasible solution for (2.1) if, among the solutions of theB-problem that we compute,
we find a solution xB that fulfills γ>AxA + γ>BxB ∈ R (mod m), where xA is the computed solution to
the relaxation of the A-problem. Indeed, in this case, the concatenation of the two solutions xA and xB is
feasible for the relaxation of (2.1). In particular, if |π(α, β)| ≥ m − |R| + 1 for some (α, β) ∈ Πnarrowed,
we are guaranteed that there is such a feasible combination. As explained above, through recursive calls
to our procedure on the B-problem, we can decide whether we are in this case, and if so also compute
m− |R|+ 1 different feasible residues (and corresponding solutions). Concretely, if we start from a problem
with |R| = m− 2, whenever we find a pair (α, β) of scalar products in Πnarrowed with |π(α, β)| ≥ 3, we can
find a feasible solution. If |π(α, β)| ≤ 2 for all (α, β) ∈ Πnarrowed, we study the pattern π more closely.

One interesting special case is when |π(α, β)| = 1 for all (α, β) ∈ Πnarrowed, i.e., each of the B-problems
is feasible for precisely one residue rB . It turns out that in this case, π is linear in the following sense.

Definition 2.17. Let Π ⊆ Z2, and let π : Π → 2{0,...,m−1} for some m ∈ Z>0. We say that π is linear if
|π(α, β)| = 1 for all (α, β) ∈ Π, and there exist r0, r1, r2 ∈ Z such that the mapping r : Π → Z fulfilling
π(α, β) = {r(α, β)} satisfies r(α, β) ≡ r0 + r1α+ r2β (mod m) for all (α, β) ∈ Π.

Linearity of π and the shape of the domain Πnarrowed makes it possible to encode the feasibility structure
of the B-problem in only two variables y1 and y2 that represent the scalar products α and β, which allows for
replacing xB with those new variables.

Theorem 2.18. Consider an R-CCTUF problem of the form given in (2.1) and let π an associated narrowed
pattern. If π is linear, then (2.1) can be reduced to the R-CCTUF problem

AxA + ey1 ≤ bA
h>xA − y2 = 0

`0 ≤ y1 + y2 ≤ u0

`1 ≤ y1 ≤ u1

`2 ≤ y2 ≤ u2

γ>AxA + r1y1 + r2y2 ∈ r0 +R (mod m)
xA ∈ ZnA

y1 , y2 ∈ Z

(2.3)

6More generally, this enumerative approach is efficient whenever the depth of Seymour’s decomposition is at most logarithmic
in the input size.

14

2.2 Overview of our approach

for suitable `0, u0, `1, u1, `2, u2 ∈ Z with ui − `i ≤ m− |R| and r0, r1, r2 ∈ {0, 1, . . . ,m− 1} that can be
determined in strongly polynomial time. That is, the initial R-CCTUF problem is feasible if and only if (2.3)
is, and a solution of one problem can be transformed into one for the other in strongly polynomial time.

Hence, when π is linear, we aim at applying Theorem 2.18 and continuing our procedure with the R-
CCTUF problem (2.3). To make progress, we aim at obtaining a smaller problem, which, as before, we
measure in terms of the number of variables. Note that the number of variables of (2.3) is the number of
columns of A plus 2, which is the same as the number of columns of the original problem plus 2 minus the
number of columns of B. However, recall that by Theorem 2.14, we are only guaranteed that the matrix B
has at least two columns—which, in the extreme case, is not enough to reduce the number of columns through
Theorem 2.18. Nevertheless, the equality constraint in (2.3) allows for eliminating a variable while keeping
the TU structure of the constraint matrix, thus guaranteeing that we can make progress. The following
theorem formalizes this result.

Theorem 2.19. Let
(

A a1
a>2 α

)
be a TU matrix with α 6= 0. Then, the matrix A− αa1a

>
2 is TU, and the two

systems
{

Ax + a1y ≤ b
a>2 x + αy = β

and
{ (

A− αa1a
>
2

)
x ≤ b− αβa1

y = αβ − αa>2 x
are equivalent.

{0, 1} {1}

{0} {0, 1}

{0}

α

β

−1 0

−1

0

1

Figure 2.1: A non-linear pattern
π with support defined by −1 ≤
α ≤ 0, −1 ≤ β ≤ 1, and −1 ≤
α+ β ≤ 1.

Combining Theorems 2.18 and 2.19, we can thus make progress in case
of a linear narrowed pattern π. For non-linear narrowed patterns, like the
one exemplified in Fig. 2.1, there are pairs (α, β) for which there is more
than one residue available, i.e., |π(α, β)|, which is an additional flexibility
we can exploit as follows.

Concretely, consider a pair (α, β) ∈ Πnarrowed of scalar products with
π(α, β) = {r1

B, . . . , r
`
B} for some ` > 1 and pairwise different riB ∈

{0, . . . ,m − 1}, and let x1
B, . . . , x

`
B be solutions of the relaxation of the

B-problem with residues γ>Bx
i
B = riB . Observe that we can combine

any feasible solution xA of the corresponding A-problem with any of the
solutions xiB to obtain feasible solutions (xA, x

i
B) of the relaxation of the

initial R-CCTUF problem. Thus, there is a solution with scalar products
(α, β) if and only if the following variation of the A-problem is feasible,
where R′ := R− π(α, β) = {(r − rB mod m) : r ∈ R, rB ∈ π(α, β)}:

AxA ≤ bA − αe
h>xA = β
γ>AxA ∈ R′ (mod m)
xA ∈ ZnA .

(2.4)

We will create a subproblem of the above form for each pair (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, and
recurse on these problems. Doing so for all such scalar product pairs (α, β) ∈ Πnarrowed, we create O(m2)
many R-CCTUF problems to recurse on, each having at most n − 2 many variables. A key observation
that allows for bounding the number of times we construct a problem of type (2.4) and recurse on it
is that problem (2.4) is simpler than the problem we started with, because the set of target residues R′

strictly increased in size compared to R, whenever m is a prime number. This is a consequence of the
Cauchy-Davenport Inequality stated below.

Lemma 2.20 (Cauchy-Davenport Inequality). Let m be a prime number and R1, R2 ⊆ {0, . . . ,m − 1}.
Then

|{(r1 + r2 mod m) : r1 ∈ R1, r2 ∈ R2}| ≥ min{m, |R1|+ |R2| − 1} .

Consequently, after at most m− |R| reduction steps, the target residues comprise all possible residues and
the corresponding problem gets trivial. Therefore, the total number of subproblems that are spawned can be

15

2 Congruency-constrained TU problems beyond the bimodular case

bounded by O(m2(m−|R|)). It thus remains to discuss scalar products (α, β) ∈ Πnarrowed with |π(α, β)| = 1
that are not covered by the previous arguments. Fig. 2.1 shows an example of a narrowed pattern that contains
three scalar product pairs (α, β) with |π(α, β)| = 1 together with two pairs with |π(α, β)| = 2. Again,
explicitly solving the corresponding A-problems is not an option because we lack the necessary progress
either in terms of the number of variables or the number of target residues.

Also, it is not possible to apply Theorem 2.18 only to the pairs (α, β) ∈ Πnarrowed with |π(α, β)| = 1,
because Theorem 2.18 crucially relies on the shape of the full domain of π, which can be described by
inequalities of the form `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, and `2 ≤ β ≤ u2. Therefore, we focus in this case
on identifying a well-chosen linear sub-pattern π̃ of π, i.e., a mapping π̃ with the properties that (i) its domain
is a subset of the domain of π and can be described by inequalities of the above type, (ii) π̃(α, β) = {rα,β}
for some rα,β ∈ π(α, β), and (iii) π̃ is linear according to Definition 2.17. Loosely speaking, a sub-pattern
covers some of the available residues in the B-problem, and it is structured enough so that we can apply a
variation of Theorem 2.18 to cover these options through a smaller problem. If |R| ≥ m− 2, it turns out that
one such sub-pattern is enough in the following sense.

Lemma 2.21. Let π : Πnarrowed → 2{0,...,m−1} be a narrowed pattern associated to a feasible R-CCTUF
problem of the form in (2.1) with prime modulus m and |R| ≥ m− 2. Then, we can in strongly polynomial
time determine a linear sub-pattern π̃ of π such that one of the following holds:

(i) There are (α, β) ∈ Πnarrowed with |π(α, β)| = 1 so that for any xA solving the relaxation of the
A-problem with respect to (α, β), there is an xB solving the relaxation of the B-problem such that the
combination (xA, xB) is feasible for the R-CCTUF problem.

(ii) There is a feasible solution for some pair (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2.
(iii) There is a feasible solution (xA, xB) for some pair (α, β) ∈ dom(π̃) such that π̃(α, β) = {γ>BxB}.

Thus, to check feasibility for an R-CCTUF problem of the form (2.1), we can first compute, for each
pair (α, β) ∈ Πnarrowed, a solution xA to the relaxation of the A-problem with respect to scalar products
(α, β) and check whether there is a solution xB to the B-problem that, combined with xA, leads to a feasible
solution to the initial problem. If this is the case, we are done. Otherwise, we know that (i) of Lemma 2.21
does not hold, and therefore either (ii) or (iii) must hold. Moreover, as previously explained, we call our
procedure recursively for pairs (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, spawning independent and simpler
(because we increase the size of the allowed target residues R) subproblems for the A-problem. Hence,
if (ii) of Lemma 2.21 applies, then one of these simpler subproblems will lead to a feasible solution to the
original problem. Finally, we apply (a slight extension of) Theorem 2.18 using the linear sub-pattern π̃ and
Theorem 2.19, thereby reducing to problems with fewer variables. By Lemma 2.21, we know that if there is
a feasible solution, we will find one in the described procedure. Altogether, we get to the following theorem.

Theorem 2.22. Consider an R-CCTUF problem with prime modulus m, n variables, ` ∈ {m− 1,m− 2}
many target residues, and a constraint matrix T falling into case (iii) of Theorem 2.14. Let p = min{nA, nB}
be the number of columns of the smaller matrix in the decomposition. After solving less than 3(m− `+ 1)2

many R-CCTUF problems with p variables, modulus m, and at most ` target residues, we can in strongly
polynomial time determine either a solution of the problem, or a family F of at most

• one R-CCTUF problem with at most n− p+ 1 variables, modulus m, and ` target residues, and
• (m− `+ 1)2 R-CCTUF problems with n− p variables, modulus m, and at least `+ 1 target residues

such that the initial R-CCTUF problem is feasible iff at least one problem in F is feasible. Also, a feasible
solution to any problem in F can in strongly polynomial time be transformed to one of the initial problem.

Finally, it remains to cover the case where the constraint matrix T falls into case (iv) of Theorem 2.14,
i.e., only after pivoting, a decomposition step is possible. It turns out that such R-CCTUF problems can be
rewritten as a problem of the same type with the pivoted constraint matrix and one extra constraint that is a
variable bound, thus subsequently allowing for a decomposition step without interfering with the progress that

16

2.3 Proof and further implications of the decomposition lemma

was made before (the number of variables and the number of target residues stay the same in the described
transformation). The following theorem formalizes this.

Theorem 2.23. Consider anR-CCTUF problem with constraint matrix T for which case (iv) of Theorem 2.14
applies, i.e., pivotij(T) admits a decomposition as a 3-sum according to Theorem 2.14. Then we can in
strongly polynomial time determine an R-CCTUF problem of the form

Ty ≤ b, yj ≤ δ, γ>y ∈ R (mod m), y ∈ Zn , (2.5)

where T is, up to changing the sign in some rows and columns, the matrix pivotij(T), and solutions of the
initial problem can be transformed to solutions of (2.5) in strongly polynomial time, and vice versa.

Leveraging Theorems 2.14, 2.15, 2.22 and 2.23, we can conclude our main result, Theorem 2.2.

Proof of Theorem 2.2. Consider an R-CCTUF problem with modulus m and ` ≥ m− 2 target residues. If
` = m, a solution can be found in strongly polynomial time by solving the relaxation of the problem using
the framework of Tardos [Tar86]. Else, we apply Theorem 2.14 to the constraint matrix T . If case (i) or (ii) of
Theorem 2.14 applies, Theorem 2.15 guarantees that we can efficiently solve the corresponding problem. If
case (iv) applies, we can reduce the problem to one where case (iii) applies through Theorem 2.23. Finally, if
case (iii) of Theorem 2.14 applies, we apply Theorem 2.22 to reduce the problem to several smaller problems
on which we recursively call our procedure. Through these recursive calls, the initial R-CCTUF problem is
reduced to several simpler R-CCTUF problems, where each of them has either m many target residues or its
constraint matrix is a base block matrix.

We first bound the number of such simpler R-CCTUF problems that we obtain. Let f(n, `) be the smallest
upper bound on the number of such problems that we obtain through our reductions when starting from an
instance with n variables and ` target residues. We claim that

f(n, `) ≤ m2(m−`) · nm−`+3 log2m+2 .

Indeed, note that f(n, `) = 1 for n ≤ 3 and all ` ≤ m, and f(n,m) = 1 for all n, and assume that the
inequality holds for all instances of up to n− 1 variables. By Theorem 2.22 and this assumption, we get for
some p ∈ {2, . . . , bn/2c}:

f(n, `) ≤ 3m2f(p, `) + f(n− p+ 1, `) +m2f(n− p, `+ 1)

≤ m2(m−`)nm−`+3 log2m+2

((p
n

)2
+

(
n− p+ 1

n

)2

+
n− p
n2︸ ︷︷ ︸

≤1

)
≤ m2(m−`)nm−`+3 log2m+2 ,

as desired.
Now observe that each of the at most f(n, `) many subproblems can either be solved directly in strongly

polynomial time as stated earlier (if it is a problem with m target residues), or we can apply the strongly
polynomial randomized algorithm provided by Theorem 2.15 to each of them logn(nf(n, `)) = O(1) many
times to correctly solve each problem with error probability at most 1/nf(n, `). Thus, by a union bound, we can
solve all these problems (and thus the initial problem) correctly with probability 1− 1/n. To finish the proof,
it remains to observe that the time for solving the discussed problems clearly dominates the time needed for
transformations and solution propagation.

2.3 Proof and further implications of the decomposition lemma

For the sake of presentation, we postpone the proof of the decomposition lemma (Lemma 2.7) and Lemma 2.9
to the end of this section and start by showing additional implications, namely Theorem 2.3 and Lemma 2.16.

17

2 Congruency-constrained TU problems beyond the bimodular case

2.3.1 An alternative approach to R-CCTUF problems with |R| = m − 1: Proving Theo-
rem 2.3

In this section, we prove that R-CCTUF problems with |R| = m − 1 can be solved deterministically
and in strongly polynomial time, as stated by Theorem 2.3. This result is closely linked to our flatness
statement, Theorem 2.4, which already guarantees that if none of the constraint matrix rows of the R-CCTUF
problem is a flat direction of the underlying polyhedron with width m− |R| − 1, then the problem can be
solved efficiently. For |R| = m − 1, the width in this statement is 0, i.e., the corresponding constraint is
a tight constraint for the full underlying polyhedron. Using Theorem 2.19, we can see that in this case of
non-full-dimensional underlying polyhedra, we can easily project to a lower-dimensional space.

Lemma 2.24. Consider an R-CCTUF problem in n ≥ 2 variables with a constraint that is tight for all
points in the underlying polyhedron. We can in strongly polynomial time determine an R-CCTUF problem in
n− 1 variables such that solutions of the first problem can be transformed to solutions of the second problem
in strongly polynomial time, and vice versa.

Proof. After permuting variables and constraints, we may assume that the inequality system in the given
R-CCTUF problem has the form(

T a1

a>2 α

)(
x
xn

)
≤
(
b
bn

)
, where T =

(
T a1

a>2 α

)
, x =

(
x
xn

)
, and b =

(
b
bn

)
,

such that a>2 x + αxn = bn is a constraint that is tight for any solution to the relaxation of the R-CCTUF
problem and α 6= 0. By Theorem 2.19, (y, yn) is a solution of the above system if and only if y solves the
TU system

(
T − αa1a

>
2

)
x ≤ b, and yn = αbn − αa>2 y. Therefore, the original R-CCTUF problem can be

reduced in strongly polynomial time to the following R-CCTUF problem with only n− 1 variables:

Tx ≤ b, (γ − αγna2)>x 6≡ r − αγnbn (mod m), x ∈ Zn−1 .

Although not exploited here, we remark that the above reduction of non-full-dimensional problems also
applies to the optimization version of the considered problem. Now, combining Lemma 2.24 and Theorem 2.4,
we immediately obtain a proof of Theorem 2.3.

Proof of Theorem 2.3. First of all, we observe that using a result of Tardos [Tar86], we can solve linear
programs over the underlying polyhedron of a given R-CCTUF problem in strongly polynomial time, and
hence, we can also detect in strongly polynomial time whether there is a tight constraint. If there is no tight
constraint, then the problem can be solved by Theorem 2.4. Otherwise, the problem is trivial when n = 1,
and if n ≥ 2, we can repeatedly apply Lemma 2.24 until we obtain a problem with n = 1, or one that does
not have tight constraints. Note that the number of variables reduces by 1 in each application of Lemma 2.24,
hence there are less than n iterations. We conclude the proof by observing that solutions of a problem without
tight constraints that stem from Lemma 2.24 can be transformed back to solutions of the initial problem in
strongly polynomial time by the very same lemma.

2.3.2 Bounded scalar products

The goal of this subsection is to deduce Lemma 2.16, which we use to restrict the search space for solutions
of R-CCTUF problems. It turns out that this lemma is an implication of a more general result that we expand
on below.

Lemma 2.25. Consider a feasible R-CCTUF problem with constraint matrix T and modulus m, and let d
be TU-appendable to T . We can determine in strongly polynomial time `, u ∈ Z with u− ` ≤ m− |R| such
that the R-CCTUF problem has a feasible solution x0 if and only if it has one with ` ≤ d>x0 ≤ u.

18

2.3 Proof and further implications of the decomposition lemma

Proof. Let Tx ≤ b be the inequality system in the R-CCTUF problem. To start with, we can in strongly
polynomial time determine ηmax := max{d>x : Tx ≤ b, x ∈ Rn} and ηmin := min{d>x : Tx ≤ b, x ∈
Rn}. If ηmax − ηmin ≤ m − |R|, we can choose u = ηmax and ` = ηmin, and there is nothing to show.
Otherwise, we claim that the statement holds for any choice of `, u ∈ {ηmin, . . . , ηmax} with u−` ≤ m−|R|.
To see this, consider any such choice of ` and u and consider the givenR-CCTUF problem with the constraints
` ≤ d>x ≤ u added to the inequality system. Because by construction, d is a flat direction of width exactly
m− |R| for that problem, applying twice Lemma 2.10 (once for each of the two constraints that we added)
gives that the problem with the constraints added is feasible if and only if the original one is.

Note that if we are given vectors d1, . . . , dp that are all simultaneously TU-appendable to the constraint
matrix of the problem, we can apply Lemma 2.25 iteratively with the TU-appendable vectors di, adding
the obtained constraints `i ≤ d>i x ≤ ui to the system in each step. This immediately implies the following
corollary.

Corollary 2.26. Consider a feasible R-CCTUF problem with constraint matrix T and modulus m, and let
d1, . . . , dp be simultaneously TU-appendable to T . We can determine in strongly polynomial time `i, ui ∈ Z
with ui − `i ≤ m− |R| for i ∈ [p] such that the R-CCTUF problem has a feasible solution x0 if and only if
it has one with `i ≤ d>x0 ≤ ui for all i ∈ [p].

Now Lemma 2.16 follows immediately from Corollary 2.26 after observing the following.

Observation 2.27. Consider a matrix T that is a 3-sum of the form T =
(

A ef>

gh> B

)
. Then, the rows(

0 f>
)
,
(
h> 0

)
, and

(
h> f>

)
are simultaneously TU-appendable to T .

Proof. Observe that
A ef>

0 f>

h> f>

h> 0
gh> B

 =

 A e e
0 1 1
h> 0 1

⊕3

0 1 f>

1 1 f>

1 1 0
g g B

 . (2.6)

Recall that because the totally unimodular matrix T decomposes into a 3-sum of the two matrices
(
A e e
h> 0 1

)
and

(
0 1 f>

g g B

)
, we know that these matrices are totally unimodular, as well. It can be easily seen that

this implies total unimodularity of the two summands in (2.6), and hence also of the 3-sum of the two
matrices.

Proof of Lemma 2.16. By Corollary 2.26 above, it is enough to show that the vectors
(
0 f>

)
,
(
h> 0

)
,

and
(
h> f>

)
are simultaneously TU-appendable to T . The latter is true, as seen in Observation 2.27 above.

Finally, we note that the assumption of simultaneous TU-appendability in Corollary 2.26 is necessary
to obtain ranges of width m − |R| for each scalar product. More generally, if we want to obtain bounds
simultaneously for all TU-appendable vectors, our general proximity result, Theorem 2.11, only implies
ranges of width 2(m− |R|) + 1.

2.3.3 Proof of the decomposition lemma (Lemma 2.7) and Lemma 2.9

In order to prove Lemma 2.7 we first show a key property of pointed polyhedral cones defined by TU matrices
(which we also call TU cones), from which will later derive Lemma 2.7. To this end, we recall that, for a
polyhedral cone C := {x ∈ Rn : Ax ≤ 0} (where A ∈ Qk×n), an extremal ray of C is a non-zero vector
r ∈ C that lies on a 1-dimensional face of C. Moreover, we use the following notion of elementary extremal
ray.

19

2 Congruency-constrained TU problems beyond the bimodular case

Definition 2.28 (Elementary extremal ray). An extremal ray r of a polyhedral cone C ⊆ Zn is elementary if
r ∈ Zn and the greatest common divisor of the coordinates of r is one.

Hence, for every rational cone C and every extremal ray r of the cone, there is some unique λ > 0 such
that λ · r is an elementary extremal ray of C.

Lemma 2.29 below shows that any point in a pointed cone C that is defined by a TU matrix can be
integrally decomposed into few elementary extremal rays in strongly polynomial time. We highlight that the
crucial part of Lemma 2.29 is that the coefficients λi can be chosen to be integral. Note that, despite the cone
being defined by a TU matrix, the elementary extremal rays in Lemma 2.29 have to be well-chosen because
the set of elementary extremal rays of C does not form a totally unimodular matrix.7 Hence, even if a set of
n elementary extremal rays of C spans y, it may be that the decomposition of y into a conic combination of
these elementary extremal rays requires non-integral coefficients. (This is arguably the case to be expected
without choosing the rays carefully.)

Lemma 2.29. Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix such that the cone C := {x ∈
Rn : Tx ≤ 0} is pointed, and let y ∈ C ∩ Zn. Then one can determine in strongly polynomial time
elementary extremal rays y1, . . . , yn ∈ Zn of C and coefficients λ1, . . . , λn ∈ Z≥0 such that y =

∑n
i=1 λiy

i.

Proof. We prove the statement by determining successively pairs (λi, y
i) of the desired decomposition of y.

We start by explaining how we compute λ1 and y1, and then highlight how to iterate the procedure to obtain
the full decomposition of y. To obtain a first coefficient λ1 and vector y1 of the desired decomposition of y,
we define an auxiliary polytope P1 by

P1 := C ∩ C1 , where C1 := {x ∈ Rn : − Tx ≤ −Ty} .

Hence,

P1 :=

{
x ∈ Rn :

(
T
−T

)
x ≤

(
0
−Ty

)}
.

Note that C1 can be interpreted as a reversed version of C with apex at y. Also note that P1 is a polytope
because C is pointed. Indeed, if P1 were unbounded, there would need to be a non-zero vector r ∈ Rn with
Tr ≤ 0 and −Tr ≤ 0, which implies Tr = 0 and contradicts that C is pointed. Moreover, as highlighted
above, observe that P1 can be described by the constraint matrix

(
T
−T
)
, which is TU.

Let T= be the set of constraints of C that are tight at y. Hence, T=y = 0. Similarly, let T< denote the
remaining constraints of C, which are the ones not tight at y. Hence, T<y < 0. In addition, without loss of
generality, we may assume that the rows in T< are linearly independent from those of T=; for otherwise they
are redundant and we can drop them. Let y1 be any extremal ray of

Q1 := {x ∈ Rn : T=x = 0, T<x ≤ 0} .

Note that Q1 is pointed because Q1 ⊆ C and C is pointed; thus, it has extremal rays. Such an extremal ray
y1 can be computed efficiently via standard techniques.8 By rescaling y1, we can assume without loss of
generality that y1 ∈ Zn is an elementary extremal ray of Q1. Let

λ1 := max
{
λ ∈ R≥0 : − T<(λy1) ≤ −T<y

}
,

7Indeed, cones defined by TU matrices can have exponentially many elementary extremal rays. This follows for example by the
well-known fact that the bipartite matching polytope P , which can be described by a TU matrix, has vertices v ∈ vertices(P) with
exponentially many edges incident to them. Hence, the set of constraints of P that are tight at v define a TU cone (when shifted such
that v becomes the origin) with exponentially many elementary extremal rays.

8Any vertex u ∈ Rn≥0 of the polytope P ′ := Q1 ∩ {x ∈ Rn : 1>x ≤ 1}, with u 6= 0, induces an extremal ray of Q1. Hence,
it is enough to compute an optimal vertex solution of the linear program max{1>x : x ∈ P ′}, which can be done in polynomial
time via standard methods. Note that all numbers/coefficients involved in this linear program are small (actually they are all within
{−1, 0, 1}). Hence, the runtime is thus trivially strongly polynomial in the original input size.

20

2.3 Proof and further implications of the decomposition lemma

that is, λ1 captures how far in the direction of the elementary extremal ray y1 we can go, when starting
from the origin, while staying within P1. The constraints of the above optimization problem are of the form
λai ≤ bi for i ∈ [`], with ai := −(T<y1)i and bi := −(T<y)i. By definition of T<, we have T<y < 0, and
thus bi > 0 for all i ∈ [`]. Hence,

λ1 = min

{
bi
ai

: i ∈ [`] with ai > 0

}
,

which shows that λ1 can be computed in strongly polynomial time by first computing ai and bi for i ∈ [`]
and then determining the minimizing ratio bi/ai.

Note that λ1y
1 must be a vertex of P1. This follows because λ1y

1 ∈ P1 by construction, and y1 is an
extremal ray of Q1 (it thus lies on a face of Q1 of dimension 1), and therefore y1 is also an extremal ray of P1

because Q1 is a face of P1.9 Hence, λ1y
1 is a face of P1 of dimension 0, i.e., λ1y

1 ∈ vertices(P1). Moreover,
because P1 is described by a TU system, its set of vertices must be all integral, and hence λ1y

1 ∈ Zn.
Furthermore, we must also have that λ1 ∈ Z≥0. If not, then we can write λ1 = p/q with p, q ∈ Z≥0 such that
their greatest common divisor gcd(p, q) equals 1 and q ≥ 2. As λ1y

1 ∈ Zn, we must have that q divides py1
i

for all i ∈ [n]. However, this implies that q divides y1
i for all i ∈ [n], which follows from gcd(p, q) = 1 and

a well-known basic number theory result.10 But this contradicts with y1 being elementary.
We now proceed inductively on the vector y′ := y − λ1y

1. Note that by construction we have Ty′ ≤ 0,
and can thus reiterate the above-explained approach with the vector y′ instead of y. Let T=

1 be the rows of T
that correspond to y′-tight constraints of Tx ≤ 0; hence, T=

1 y
′ = 0. Analogously as before, let T<1 be the

other rows, which correspond to constraints of Tx ≤ 0 that are not y′-tight. As before, we then define

Q2 := {x ∈ Rn : T=
1 x = 0, T<1 x ≤ 0} ,

compute an elementary extremal ray of Q2 and continue as above. Note that dim(Q2) < dim(Q1), because
y′ := y− λ1y

1 was chosen such that a new constraint of Tx ≤ 0 that was not y-tight became y′-tight. Hence,
this procedure will terminate after at most dim(Q1) ≤ n many iteration. If the procedure terminates in
less than n iterations, in which case we get a decomposition with fewer than n terms, we can add arbitrary
extremal rays with zero coefficients to the decomposition to obtain the claimed n many terms.

The following statement shows that elementary extremal rays of a TU cone are elementary with respect to
the TU matrix defining the cone. This property links the notions of elementary extremal ray and of being
elementary with respect to a TU matrix.

Lemma 2.30. Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix and r ∈ Zn be an elementary extremal
ray of C := {x ∈ Rn : Tx ≤ 0}. Then r is elementary with respect to T .

Proof. With the goal of deriving a contradiction, assume that there is a vector d ∈ {−1, 0, 1}n that is
TU-appendable to T and such that η := d>r 6∈ {−1, 0, 1}. Without loss of generality, we assume η > 0,
which can be achieved by replacing d by −d if necessary. We denote by

L := {λr : λ ≥ 0}

the 1-dimensional face of C on which r lies.
Note that (1/η) · r lies in the following polyhedron, which is defined by a TU constraint matrix (due to

TU-appendability of d):

Z :=
{
x ∈ Rn : Tx ≤ 0, dTx = 1

}
.

9Here we use the basic polyhedral fact that a face of a face of a polyhedron is a face of the polyhedron.
10More precisely, we use that for any a, b, c ∈ Z with gcd(a, b) = 1, if a divides bc then a divides c.

21

2 Congruency-constrained TU problems beyond the bimodular case

Hence, (1/η) · r can be written as a convex combination of integer points in Z, say

1

η
· r =

q∑
j=1

µjzj , (2.7)

with µj ≥ 0, zj ∈ Z ∩ Zn for j ∈ [q], and
∑q

j=1 µj = 1. Observe that (1/η) · r is the only point on L that is
also in Z because d>r 6= 0, i.e.,

L ∩ Z = {(1/η) · r} .

As (1/η) · r 6∈ Zn, because r is elementary and η > 1, we have

zj 6∈ L ∀j ∈ [q] .

However, this leads to a contradiction because it implies that the decomposition (2.7) expresses a point on
the 1-dimensional face L of C as a convex combination of points in C, none of which lies on L. This is
impossible because any convex combination that describes a point on a 1-face of a polyhedron needs to use
terms on the same face.

We are now ready to prove Lemma 2.7.

Proof of Lemma 2.7. Because the statement is invariant under a shift of the coordinate system, we can
assume x0 = 0 for convenience. (Formally, instead of considering Tx ≤ b and x0, y, we consider the system
Tx ≤ b− Tx0 and replace x0 and y by the origin and y − x0, respectively.) Moreover, we observe that we
can assume that the system Tx ≤ b contains, for each i ∈ [n], the constraint{

xi ≥ 0 if yi ≥ 0 ,

xi ≤ 0 if yi < 0 .
(2.8)

Indeed, by adding these constraints, the thus obtained system T̃ x ≤ b̃ is still a TU system for which both the
origin and y are feasible. Moreover, a decomposition of y with respect to this new system T̃ x ≤ b̃ has the
desired properties because a vector is TU-appendable to T if and only if it is TU-appendable to T̃ , which
implies that a vector is elementary w.r.t. T if and only if it is elementary w.r.t. T̃ .11 Hence, we assume from
now on that Tx ≤ b contains the constraints (2.8), which implies that T has full column rank.

We now define a TU matrix T ∈ {−1, 0, 1}k×n which is obtained from T by changing the sign of some of
its rows. More precisely for each row w> of T , the matrix T contains a row{

w> if w>y ≤ 0 ,

−w> if w>y > 0 .

We define
C :=

{
x ∈ Rn : Tx ≤ 0

}
.

Note that C is pointed because T has full column rank, which follows from T having full column rank. We
now apply Lemma 2.29 to the TU matrix T and point y. This leads to a decomposition of y as y =

∑n
i=1 λiy

i

such that, for i ∈ [n], we have λi ∈ Z≥0 and yi is an elementary extremal ray of C. We claim that this
decomposition has the desired properties.

Note that by Lemma 2.30, each vector yi for i ∈ [n] is elementary with respect to T . It is therefore also
elementary with respect to T , because T and T have the same set of TU-appendable rows as they are the
same matrices up to sign changes of some of the rows.

11The fact that TU-appendability to T is the same as TU-appendability to T̃ is an immediate consequence of the fact that adding
rows that are all-zero except for a single 1 or −1 entry to any TU matrix preserves TU-ness.

22

2.3 Proof and further implications of the decomposition lemma

It remains to show that for any coefficients µ1, . . . , µn ∈ Z≥0 with µi ≤ λi for i ∈ [n], we have that the
vector

ỹ := x0 +

n∑
i=1

µiy
i =

n∑
i=1

µiy
i

satisfies T ỹ ≤ b. To this end consider a constraint w>x ≤ β of the system Tx ≤ b. We distinguish between
whether w> or −w> is a row of T . If w> is a row of T , then

wT ỹ =

n∑
i=1

µiw
>yi ≤ 0 ≤ β ,

where the first inequality follows from wT yi ≤ 0 because yi is a ray of C, and the second inequality follows
from the fact that the origin is feasible for the system Tx ≤ b, which implies that all right-hand sides are
non-negative.

Consider now the case where −w> is a row of T . Then we have

w>ỹ = w>y −
n∑
i=1

(λi − µi)w>yi ≤ w>y ≤ β ,

where the first inequality follows from λi ≥ µi together with w>yi ≥ 0, which holds because Tyi ≤ 0 and T
contains the row −w>, and the last inequality follows from Ty ≤ b, which contains the constraint w>y ≤ β.
Hence, ỹ fulfills all constraints of the system Tx ≤ b, as desired, which finishes the proof.

Proof of Lemma 2.9. By applying Lemma 2.7 to the solutions y and x0 of the system Tx ≤ b of the given
R-CCTUF problem, we obtain in strongly polynomial time y1, . . . , yn ∈ Zn and λ1, . . . , λn ∈ Z≥0 such
that y = x0 +

∑n
i=1 λiy

i and (i) d>yi ∈ {−1, 0, 1} for all i ∈ [n] and all d that are TU-appendable to T ,
and (ii) ỹ = x0 +

∑n
i=1 µiy

i is feasible for Tx ≤ b for any choice of µi ∈ {0, . . . , λi}. By these properties,
in order to prove Lemma 2.9, it is enough to identify in strongly polynomial time µi ∈ {0, . . . , λi} with∑n

i=1 µi < m− |R| such that γ>ỹ = γ>x0 +
∑n

i=1 µiγ
>yi ∈ R (mod m). Denoting Λ =

∑n
i=1 λi and

R′ = {(r − γ>x0 mod m) : r ∈ R} , as well as

r1 = . . . = rλ1 = γ>y1 ,

rλ1+1 = . . . = rλ1+λ2 = γ>y2 ,

...

rλ1+...+λn−1+1 = . . . = rΛ = γ>yn ,

(2.9)

we can formulate this problem as follows: We start from the sum
∑

i∈S0 ri ∈ R′ (mod m) with S0 =
{1, . . . ,Λ}, and our goal is to identify a subset S ⊆ S0 of size at most m − |R| = m − |R′| such that∑

i∈S ri ∈ R′ (mod m), as well. By Lemma 2.8, we know that if |S0| > m− |R′|, there exists an interval
I1 = {i11, . . . , i12} with i11, i

1
2 ∈ S0 and i11 < i12 such that for S1 = S0 \ I1, we have

∑
i∈S1 ri ∈ R

′ (mod m).
Iterating this argument, we obtain that for j = 1, 2, . . . and while |Sj−1| > m− |R′|, there exists an interval
Ij = {ij1, . . . , i

j
2} with ij1, i

j
2 ∈ S0 and ij1 < ij2 such that Ij ∩ Sj−1 6= ∅, and for Sj = Sj−1 \ Ij , we have∑

i∈Sj rj ∈ R
′ (mod m). For clarity, we remark that in step j, we are removing the terms with indices in

Sj−1 ∩ Ij from the sum. Moreover, while these indices are consecutive in the sum that we consider in step j,
they may not be so in the original sum

∑n
i=1 ri. Also, this means that an index i ∈ {1, . . . ,Λ} may well be

contained in several intervals Ij .
Because Ij ∩ Sj−1 6= ∅, the number of terms in the sum strictly decreases in every step, so the procedure

terminates, which shows existence of the desired solution ỹ, as already pointed out in Section 2.2.1. To arrive
at a suitably short sum in strongly polynomial time, we split the deletion process into two phases:

23

2 Congruency-constrained TU problems beyond the bimodular case

Phase 1: Steps j such that |Sj−1| > m− 1, i.e., the sum has more than m− 1 terms.
Hence, the above arguments can be applied with R′ replaced by the singleton set {(

∑
i∈S0 ri mod m)}

such that the sums
∑

i∈Sj ri obtained in this phase all have the same residue. Equivalently, terms that
sum to 0 (mod m) are removed in every step, i.e.,

∑
i∈Sj−1∩Ij ri ≡ 0 (mod m).

Phase 2: Steps j such that |Sj−1| ≤ m− 1, i.e., the sum has at most m− 1 terms.
In this case, at most |R| − 1 further deletion steps suffice to reduce to at most m− |R| many terms.

A way to perform the steps in strongly polynomial time both in phase 1 and phase 2, as well as a strongly
polynomial bound on the number of steps in phase 1 is provided by the following two claims:

(i) We can, in every step of the described procedure and in strongly polynomial time, determine an interval
to delete of maximum possible size, i.e., determine Ij such that |Sj−1 ∩ Ij | is maximized.

(ii) If in every step, Ij is chosen according to point (i), the procedure ends after at most n steps.

Together, (i) and (ii) immediately prove Lemma 2.9. To proof the two claims, let us start with focusing on
claim (ii). First, we observe that in phase 1, choosing Ij to maximize |Sj−1 ∩ Ij | implies that no two intervals
will overlap, i.e., Ij ∩ Ik = ∅ for all intervals Ij and Ik that we construct in this phase. To see this, assume for
the sake of deriving a contradiction that I` is an interval that overlaps with some earlier intervals Ij1 , . . . , Ijt
with j1 < . . . < jt < `, and choose the minimum ` with this property. In particular, we thus know that the
intervals Ij1 , . . . , Ijt do not overlap with each other and with any other intervals Ij with j < `. This implies
that in step j1, I ′ := I` ∪ Ij1 ∪ . . . ∪ Ijt is a candidate interval: Indeed, taking I ′ would remove the terms

∑
i∈Sj1−1∩I′

ri =
∑
i∈I′

ri =

t∑
p=1

∑
i∈Ijp

ri +
∑

i∈I`\
⋃t
p=1 Ijp

ri =

t∑
p=1

∑
i∈Sjp−1∩Ijp

ri +
∑

i∈S`−1∩I`

ri ≡ 0 (mod m) ,

where we use that I` is the first interval that overlaps with other intervals, and that because we are in phase 1,
each individual sum in the last expression is 0 (mod m). Moreover, note that Sj1−1 ∩ Ij1 (Sj1−1 ∩ I ′,
hence |Sj1−1 ∩ Ij1 | < |Sj1−1 ∩ I ′|, contradicting the choice of Ij1 to maximize |Sj1−1 ∩ Ij1 |. Thus, the
intervals Ij obtained in phase 1 are all disjoint, hence in particular, we always have Sj−1 ∩ Ij = Ij , i.e., in
step j, we remove precisely the terms with indices in Ij from the sum.

Next, recall the way that residues ri were defined in (2.9): They come in n chunks of equal residues,
namely with indices in C1 = {1, . . . , λ1}, C2 = {λ1 +1, . . . , λ1 +λ2}, . . . , Cn = {λ1 + . . .+λn−1, . . . ,Λ}.
We observe that each of those chunks Ci can contain at most 2 endpoints of intervals Ij that are constructed
during phase 1. To see this, assume for the sake of deriving a contradiction that one C` contains at least three
interval endpoints. We distinguish two cases:

• C` contains both endpoints of an interval Ij = {ij1, . . . , i
j
2}, and (at least) one endpoint of Ik =

{ik1, . . . , ik2}. Intervals do not overlap, so assume without loss of generality that ij2 < ik1 and choose k
such that ik1 is smallest possible. We claim that instead of Ij or Ik (whichever was deleted first), we
could also have chosen the larger interval I ′ = {ik1 − i

j
2 + ij1, . . . , i

k
2}: Indeed,

∑
i∈I′

ri =

ik1−1∑
i=ik1−i

j
2+i

j
1−1

ri +

ik2∑
i=ik1

ri =
∑
i∈Ij

ri +
∑
i∈Ik

ri ≡ 0 (mod m) ,

where we use that ri = ri′ for all i, i′ ∈ C`, and that because we are in phase 1, each individual sum in
the last expression is 0 (mod m). Because |Ij |, |Ik| < |I ′|, this contradicts the choice of intervals Ij
such that |Sj−1 ∩ Ij | = |Ij | is maximized.

• C` does not contain both endpoints of any interval Ij . This implies that every interval that has one
endpoint in C` contains at least one of the minimum or maximum indices in C`. Consequently, if
C` contains at least three endpoints, one of these two indices is covered by at least two intervals,
contradicting that intervals are disjoint in phase 1.

24

2.3 Proof and further implications of the decomposition lemma

This proves that every Ci can contain at most 2 endpoints of intervals constructed in phase 1, hence there can
be at most n such intervals, and phase 1 ends after at most n steps. This proves claim (ii).12

Finally, and to complete the proof of Lemma 2.9, we focus on claim (i) above, i.e., on how to efficiently
find intervals Ij maximizing |Sj−1 ∩ Ij |. To this end, let us recall what the situation is: We are given
r1, . . . , rΛ as defined in (2.9), and a set S of target residues (in phase 1, S will contain a single residue; in
phase 2, it will be equal to R′ from (2.9)) such that

∑
i∈[Λ] ri ∈ S (mod m), and the goal is to identify an

interval I = {i1, . . . , i2} ⊆ [Λ] such that
∑

i∈[Λ]\I ri ∈ S (mod m), and |I| has maximum possible size.
Observe that if we update the values λi, Λ, and ri accordingly to reflect the remaining sum after each step of
the procedure, this is the precise setup that we are faced with in each step. In what follows, we show that an
optimal interval I = {i1, . . . , i2} can be identified after solving O(n2|S|) many IPs with a constant number
of variables and a constant number of constraints.

To see this, let Cj and Ck (as defined earlier), with 1 ≤ j ≤ k ≤ n, be such that i1 ∈ Cj and i2 ∈ Ck. If
j < k, then i1 =

∑j−1
i=1 λi + x for some x ∈ {1, . . . , λj}, and i2 =

∑k−1
i=1 λi + y for some y ∈ {1, . . . , λk},

∑
i∈[Λ]\I

ri =
∑
i∈[Λ]

ri −

(λj − x+ 1)rλ1+...+λj+1 +

k−1∑
i=j+1

λirλi+...+λi+1 + yrλ1+...+λk+1

 ,

and thus ∑
i∈[Λ]\I

ri ∈ S (mod m) ⇐⇒ −xrλ1+...+λj+1 + yrλ1+...+λk+1 ∈ S′ (mod m) ,

where S′ is a shifted version of S. Moreover, observe that |I| = λj − x+ 1 +
∑k−1

i=j+1 λi + y, hence |I| is of
maximum size if y − x is maximized. Altogether, we obtain that x and y are optimal solutions of

mins∈S′ max y − x
−xrλ1+...+λj+1 + yrλ1+...+λk+1 = zm+ s

x ∈ {1, . . . , λj}
y ∈ {1, . . . , λk}
z ∈ Z .

(2.10)

Similarly, if j = k, then i1 =
∑j−1

i=1 λi + x and i2 =
∑j−1

i=1 λi + y for some x, y ∈ {1, . . . , λj} with x ≤ y,
and we have∑

i∈[Λ]\I

ri =
∑
i∈[Λ]

ri − (y − x+ 1)rλ1+...+λj+1 ∈ S (mod m)

⇐⇒ (y − x)rλ1+...+λj+1 ∈ S′ (mod m) ,

where again, S′ is a shifted version of S. Moreover, |I| = y − x+ 1, hence |I| is of maximum size if y − x
is maximized. Thus, we obtain that x and y are optimal solutions of

mins∈S′ max y − x
(y − x)rλ1+...+λj+1 = zm+ s

x ≤ y
x, y ∈ {1, . . . , λj}
z ∈ Z .

(2.11)

Finally, observe that to solve the problems in (2.10) and (2.11), it is enough to solve the inner maximization
problem for every s ∈ S′. Given s, these maximization problems are integer programs with 3 variables and

12We remark that a slightly more careful analysis, in particular of endpoints in C1 and Cn, immediately improves this bound to
n− 1, but this is not needed for our purpose.

25

2 Congruency-constrained TU problems beyond the bimodular case

a constant number of constraints, and can thus be solved in time polynomial in the encoding size of the
IP using Lenstra’s algorithm [Len83], which is strongly polynomial in the size of the R-CCTUF problem.
Moreover, for fixed j and k, it is immediate that a solution of (2.10) or (2.11) (if it exists) corresponds to
an largest possible interval I with endpoints in Cj and Ck. Altogether, by going through the O(n2) many
options for j, k ∈ [n], we can in strongly polynomial time determine the optimal interval I . This proves
claim (i), and thus concludes the proof of Lemma 2.9.

2.4 Solving base block problems

In this section, we discuss how to solve CCTU problems—and thus also CCTUF and R-CCTUF problems—
whose constraint matrices are base block matrices, i.e., matrices falling into case (i) or (ii) of Theorem 2.14.
Note that we can always assume to start with a CCTU problem whose relaxation is feasible, which we can
check in strongly polynomial time; for otherwise, the CCTU problem is clearly infeasible. Hence we assume
feasibility of the relaxation throughout this section. To start with, let us recall the definition of a network
matrix.

Definition 2.31. A matrix T is a network matrix if the rows of T can be indexed by the edges of a directed
spanning tree (V,U), and the columns can be indexed by the edges of a directed graph (V,A) on the same
vertex set, such that for every arc a = (v, w) ∈ A and every arc u ∈ U ,

Tu,a =

1 if the unique v-w path in U passes through u forwardly,
0 if the unique v-w path in U does not pass through u,
−1 if the unique v-w path in U passes through u backwardly.

Note that here, a directed graph is called a spanning tree if it is a spanning tree when ignoring edge
directions. Moreover, we remark that we allow graphs to have several parallel edges connecting the same two
vertices. In particular, the graph (V,A) in the above definition may have parallel edges, which correspond to
identical columns of T . An important fact for our purposes is the following.

Lemma 2.32 (see, for example, [Sch98]). Given a matrix T , one can efficiently recognize whether it is a
network matrix. If so, a directed graph (V,A) and a directed tree (V,U) as in Definition 2.31 can be found
efficiently.

In the subsequent three sections, we distinguish three cases, namely whether the constraint matrix T of
the CCTU problem that we consider is a network matrix, the transpose of a network matrix, or a matrix
stemming from the constant-size matrices given in case (ii) of Theorem 2.14. As indicated above, we show
in each case that the corresponding CCTU problem can be solved efficiently under some assumptions, thus
implying Theorem 2.15, which covers the corresponding feasibility problems.

In the case of network matrices and their transposes, we perform reductions to combinatorial problems. In
this context, it is convenient to transform the CCTU problems into a more structured class of CCTU problems,
which we call normalized CCTU problems and are defined as follows.

Definition 2.33 (Normalized CCTU problem). A problem of the form

min
{
c>x

∣∣ Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
(2.12)

fulfilling that the origin is an optimal solution to the relaxation of (2.12), is called a normalized CCTU
problem.

Note that the right-hand side b of a normalized CCTU problem is non-negative because the origin is
feasible. As we briefly discuss in the following, it is not hard to see that one can assume to deal with
normalized CCTU problems, as formalized in the following observation.

26

2.4 Solving base block problems

Observation 2.34. Every CCTU problem can be reduced in strongly polynomial time to a normalized CCTU
problem. Furthermore, if the constraint matrix of the first problem is a base block matrix, the constraint
matrix of the latter problem is a base block matrix of the same type.

Proof. Indeed, consider an arbitrary CCTU problem (with feasible relaxation)

min
{
c>x

∣∣ Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn
}
. (2.13)

An equivalent CCTU problem where the origin is an optimal solution to its relaxation can simply be obtained
by a standard shifting argument. To this end, assume first that the relaxation has a finite optimal solution.
In this case we compute such a finite optimal solution x0, and then substitute x by x′ + x0 to obtain the
equivalent CCTU problem

min
{
c>x′

∣∣ Tx′ ≤ b′, γ>x′ ≡ r′ (mod m), x′ ∈ Zn
}
,

where b′ = b−Tx0 and r′ = r−γ>x0. Clearly, the origin is an optimal solution to this transformed problem.
In case the relaxation is unbounded, we know by Lemma 2.72 that (2.13) is either infeasible or unbounded.
Hence, it is unbounded if and only if it is feasible. Moreover, Lemma 2.72 allows for obtaining efficiently a
description of a set of unbounded solutions from any solution to (2.13). Hence, in this case, the optimization
problem for (2.13) is equivalent to its feasibility version, and we can therefore replace the objective c by an
all-zeros objective. This brings us back to the first case where the relaxation has a finite optimum.

Furthermore, to reduce to non-negative variables we can use another standard transformation that replaces
every variable x ∈ Z by the difference x+ − x− of two non-negative variables x+, x− ∈ Z≥0. Notably, these
substitutions change the constraint matrix, but it can be observed that base block matrices remain base block
matrices of the same type.13 Applying this reduction on top of the previous one, we maintain that the origin
is an optimal solution to the relaxation, thus obtaining Observation 2.34.

Moreover, note that by our proximity result, Theorem 2.5, we obtain that a normalized CCTU problem
has an optimal solution x∗ with ‖x∗‖∞ ≤ m− 1. Due to the non-negativity of the variables in a normalized
CCTU problem, we thus obtain that there is an optimal solution x∗ with x∗i ∈ {0, . . . ,m− 1} for each entry
i ∈ [n]. This is a property we repeatedly exploit in our reductions developed in the following.

2.4.1 Network matrices

In this section, we show that CCTU problems with unary encoded objectives and constraint matrices that are
network matrices can be solved efficiently using a randomized algorithm.

Theorem 2.35. There is a strongly polynomial time randomized algorithm to solve CCTU problems with
unary encoded objectives, constant modulus and constraint matrices that are network matrices.

Our approach in this case is to exploit the graph structure that comes with network matrices to interpret
CCTU problems (or, more precisely, normalized CCTU problems) with network constraint matrices as
minimum-cost congruency-constrained circulation problems in certain directed graphs. To get started, let
us recall that a circulation f in a directed graph G = (V,A) with capacities u : A → Z≥0 is a mapping
f : A→ Z≥0 such that f(a) ≤ u(a) for every arc a ∈ A, and f(δ+(v)) = f(δ−(v)) for every vertex v ∈ V .
Given arc lengths ` : A → Z, the length of a circulation f is `(f) :=

∑
a∈A `(a)f(a). Note that here, arc

lengths are allowed to be negative.
A congruency-constrained circulation problem is formally defined as follows.

13Indeed, if we start with a constraint matrix T , this transformation to non-negative variables will lead to constraints described by
the constraint matrix [T − T] together with non-negativity constraints. Moreover, each of the base block matrix types is closed
under copying columns, changing the signs of columns, and adding rows with a single non-zero entry.

27

2 Congruency-constrained TU problems beyond the bimodular case

Congruency-Constrained Circulation (CCC): Let G = (V,A) be a directed graph with capacities
u : A → Z≥0, arc lengths ` : A → Z, and let η : A → Z, r ∈ Z, and m ∈ Z>0. Find a minimum-
length circulation f : A→ Z≥0 in the given network such that

∑
a∈A η(a)f(a) ≡ r (mod m).

The lemma below reduces CCTU problems with constraint matrices that are network matrices to CCC
problems.

Lemma 2.36. CCTU problems with modulus m and constraint matrices that are network matrices can be
reduced in strongly polynomial time to CCC problems with modulus m and capacities within {0, . . . ,m− 1}.

Proof. First of all, we know by Observation 2.34 that any CCTU problem with a constraint matrix that is a
network matrix can be efficiently reduced to a normalized CCTU problem with a constraint matrix of the
same type. Thus, assume we are given a normalized problem of the form

min
{
c>x

∣∣ Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
with a network matrix T . By Theorem 2.11, we have that there is an optimal solution x to the above problem
with |d>x| ≤ m− 1 for all d that are TU-appendable to T .

We now define a CCC problem to which the above CCTU problem reduces. To this end, let (V,U) be the
directed tree whose edges index the rows of the network matrix T , and let (V,E) be the digraph whose edges
index the columns of T , as described in Definition 2.31. Let G be the directed graph with vertex set V and
edge set A := U ∪ ~U ∪ ~E, where ~U := {(w, v) : (v, w) ∈ U} and analogously ~E := {(w, v) : (v, w) ∈ E}.
Moreover, for an arc u = (v, w), denote by ~u = (w, v) the corresponding reverse arc. We define the
capacities u : A→ Z≥0, lengths ` : A→ Z, and values η : A→ Z of the CCC problem as follows. For all
a ∈ A,

u(a) :=

{
min{ba,m− 1} if a ∈ U
m− 1 if a ∈ ~U ∪ ~E

,

`(a) :=

{
c ~a if a ∈ ~E

0 if a ∈ U ∪ ~U
, and

η(a) :=

{
γ(~a) if a ∈ ~E

0 if a ∈ U ∪ ~U
.

Moreover, the modulus and target residue of the CCC problem are the same as of the CCTU problem, i.e., m
and r, respectively. This concludes the definition of the CCC problem to which we reduce.

Finally, the desired statement follows directly from the following claim, which relates solutions of the
CCTU problem to feasible circulations of the above-defined CCC problem.

Claim 2.37. There is a solution of the CCC problem of length no larger than the optimal value of the CCTU
problem. Conversely, given a circulation f for the CCC problem, one can compute in strongly polynomial
time a solution x of the CCTU problem with c>x = `(f).

To see the forward direction of the claim, we start with an optimal solution x to the CCTU problem. By
Theorem 2.11, we can assume that |d>x| ≤ m− 1 for all d that are TU-appendable to T . In particular, this
implies x ∈ {0, . . . ,m− 1}E .

We now start by defining a circulation g : A→ Z≥0 (that may violate the capacity constraints given by u)
by

g :=
∑
e∈E

x(e)
(
χ ~e + χPe

)
, (2.14)

28

2.4 Solving base block problems

where, for every e = (v, w) ∈ E, the set Pe ⊆ U ∪ ~U is the unique path from v to w in U ∪ ~U that has all
edges directed from v to w. Finally, the circulation f : A→ Z≥0 that corresponds to x is obtained from g by
cancelling out flows on arcs in opposite directions. Formally, we set

f(a) :=

{
g(a) if a ∈ E ,

g(a)−min{g(a), g(~a)} if a ∈ U ∪ ~U .

Hence, one can interpret f as being obtained from g by cancelling flow on 2-cycles. By the definition of the
lengths `, one immediately obtains `(f) = c>x as desired. Moreover, because x is integral, we have that g is
integral and therefore also f . Also,

∑
a∈A η(a)f(a) = γTx ≡ r (mod m). It remains to observe that f is

a circulation, i.e., each vertex has the same in-flow as out-flow with respect to f and f fulfills the capacity
constraints given by u.

Note that each vertex has the same in- and out-flow with respect to g, because every term in (2.14)
corresponds to sending a flow of x(e) along the cycle ~e ∪ Pe. Because f is obtained from g by cancelling
flow on 2-cycles, also f has the same in- and out-flow at every vertex.

It remains to verify that the capacities given by u are respected by f . The capacities of arcs a ∈ ~E, which
are u(a) = m − 1, are fulfilled by f because x(e) ≤ m − 1. Consider now an arc a ∈ U and denote by
Ca ⊆ V the unique cut in (V,U) that satisfies δ+(Ca) = {a} and δ−(Ca) = ∅. Such a cut exists as (V,U)
is a tree. Because f is a circulation, we have

0 = f(δ+(Ca))− f(δ−(Ca)) = f(a)− f(~a) + f(δ+(Ca) ∩ ~E)− f(δ−(Ca) ∩ ~E)

⇐⇒ f(a)− f(~a) =
∑

e∈E : a∈Pe

x(e)−
∑

e∈E : ~a∈Pe

x(e) . (2.15)

Observe that the difference of the last two sums is precisely d>x, where d is the row vector of T indexed by
u. Because d>x ≤ ba is a constraint of the original normalized CCTU problem, we have f(a) − f(~a) =
d>x ≤ ba. Moreover, because both d> and −d> are TU-appendable to the constraint matrix T , we obtain by
Theorem 2.11 that −m+ 1 ≤ f(a)− f(~a) ≤ m− 1. Hence,

−(m− 1) ≤ f(a)− f(~a) ≤ min{ba,m− 1} .

The above inequality implies f(a) ≤ min{ba,m − 1} − f(~a) ≤ min{ba,m − 1} = u(a). Moreover,
f(~a) ≤ m− 1 + f(a) = u(~a) + f(a). Note that because f has by definition a value of zero on either a or ~a,
this implies that either f(~a) = 0 ≤ m− 1 = u(~a), if f(~a) = 0, or f(~a) ≤ m− 1 + f(a) = m− 1 = u(~a),
if f(a) = 0. In any case, we have f(~a) ≤ u(~a). Thus, f also fulfills the capacity constraints for all arcs in
U ∪ ~U .

For the backward direction of Claim 2.37, assume that we are given an integral circulation f in G
respecting the capacity constraints u, and define x(e) := f(~e) for all e ∈ E. Note that we thus obtain x in
strongly polynomial time. Again, (2.15) holds and the right-hand side is d>x, where d is the row indexed by
a in T . Non-negativity of f and the capacity constraints then imply for all a ∈ A that

d>x = f(a)− f(~a) ≤ f(a) ≤ ba .

Hence, x satisfies all constraints Tx ≤ b and is non-negative due to non-negativity of f . Moreover, we again
have

γ>x =
∑
e∈E

γ(e)x(e) =
∑
e∈ ~E

η(~e)f(~e) =
∑
a∈A

η(a)f(a) ≡ r (mod m) .

Hence, the vector x is feasible for the CCTU problem. This proves the claim, which in turn implies the
statement of Lemma 2.36, as desired.

29

2 Congruency-constrained TU problems beyond the bimodular case

We remark that for modulusm = 2, an analogous reduction to the one we used in the proof of Lemma 2.36
was already done in [AWZ17]. Our reduction is a generalization of that one. For the special case with
modulus m = 2, the resulting CCC problems are non-trivial only if r = 1, i.e., when the goal is to find an
odd circulation. This can easily be reduced to finding a shortest odd cycle in a suitable auxiliary graph, which
can be solved via standard techniques. For general m, however, the solution structure can be significantly
more complex. We observe and exploit a connection to the so-called exact length circulation problem, where
the goal is to find a circulation whose length is equal to a given value.

Exact Length Circulation (XLC): Let G = (V,A) be a digraph with capacities u : A→ Z>0 and
arc lengths ` : A→ Z. Given L ∈ Z, find a circulation f in the given network such that `(f) = L.

Exact length circulation problems can be solved using a randomized pseudopolynomial algorithm, as shown
by Camerini, Galbiati, and Maffioli [CGM92]. They reduce the problem to an exact cost perfect matching
problem, which can then be reduced to computing the coefficients of a well-defined polynomial. The
following theorem summarizes the result of Camerini, Galbiati, and Maffioli [CGM92] for XLC.

Theorem 2.38 ([CGM92]). There is a randomized algorithm to solve XLC problems in a directed graph
G = (V,E) with capacities u : A→ Z≥0 in time poly(|V |,maxa∈A u(a),maxa∈A |`(a)|).

Thus, it remains to build the connection between CCC and XLC problems. We achieve this by integrating
the contributions η(a) of every arc towards the congruency constraint into its length, and searching for the
minimum length of a suitable circulation using binary search, thereby obtaining the following lemma.

Lemma 2.39. Every CCC problem in a graph G = (V,A) with modulus m, arc lengths ` : A → Z, and
capacities u : A → {0, 1, . . . ,m − 1} can be polynomially reduced to poly(m, |V |, |A|,maxa∈A |`(a)|)
many XLC problems in G with the same capacities.

Proof. Note that in any CCC problem, we may assume without loss of generality that η(a) ∈ {0, . . . ,m−1}
by reducing the values modulo m. Now, for every arc a in a given CCC problem, define a new length
function ˜̀(a) = `(a) ·m2|A| + η(a). We thus have ˜̀(f) = `(f) ·m2|A| +

∑
a∈A η(a)f(a), and because∑

a∈A η(a)f(a) < m2|A|, we can retrieve both `(f) and
∑

a∈A η(a)f(a) from c̃(f). Consequently, finding a
circulation of length L with

∑
a∈A η(a)f(a) ≡ r (mod m) is equivalent to solving XLC problems inG with

respect to lengths ˜̀and with target length L̃ = L·m2|A|+km+r for all k ∈ {0, . . . ,m|A|−1}. We can find
the smallestL for which there is a CCC solution of lengthL by binary search inO(log(m|A|·maxa∈A |`(a)|))
iterations, because |`(f)| =

∣∣∑
a∈A `(a)f(a)

∣∣ ≤ m|A| ·maxa∈A |`(a)|. Altogether, this gives the desired
result.

Combining the above findings, we conclude this section with a proof of Theorem 2.35.

Proof of Theorem 2.35. By Lemma 2.36, a CCTU problem whose constraint matrix is a network matrix
can be reduced in strongly polynomial time to a CCC problem with u(a) ≤ m − 1 for all a ∈ A. By
Lemma 2.39, this problem further reduces to poly(m, |V |, |A|,maxa∈A |c(a)|) many XLC problems, where
each of them can be solved in poly(|V |,maxa∈A u(a),maxa∈A |c(a)|) = poly(|V |,m,maxa∈A |c(a)|) time
using a randomized algorithm. Thus, overall, we obtain that there is a randomized algorithm to solve a
CCTU problem whose constraint matrix is a network matrix in time poly(m, |V |, |A|,maxa∈A |c(a)|), i.e., a
strongly polynomial algorithm if the objective c is given in unary encoding and m is a constant.

2.4.2 Transposes of network matrices

The purpose of this section is to prove the following theorem.

Theorem 2.40. There is a strongly polynomial time algorithm to solve CCTU problems with constant prime
power modulus and constraint matrices that are transposed network matrices.

30

2.4 Solving base block problems

To achieve this result, we again exploit the graph structure coming with network matrices. This time, we
reduce CCTU problems (or, more precisely and equivalently, normalized CCTU problems) to certain directed
cut problems of the following form.

Constrained Tree Cuts (CTC): Let T = (V,U) be a directed tree, A ⊆ V × V and b : A→ Z≥0.
Let c : U → Z be arc costs, α : V → Z, r ∈ Z, and m ∈ Z>0. Find a family of sets S1, . . . , S` ⊆ V
minimizing the total cost

∑`
i=1 c(δ

+(Si)) such that

(i) δ−(Si) = ∅ for all i ∈ [`],
(ii) |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| ≤ ba for all a = (v, w) ∈ A, and

(iii)
∑`

i=1 α(Si) ≡ r (mod m), where α(Si) :=
∑

v∈Si α(v).

We highlight that in CTC problems, the number ` ∈ Z≥0 of sets that are returned is not fixed upfront; in the
extreme case, we might even return an empty family, i.e., use ` = 0. Moreover, we also allow the sets Si to
be empty or equal to V , opposed to the typical setting in cut problems where this is usually excluded. CTC
problems inherit many structural properties from CCTU problems, including structural results on optimal
solutions. These will allow us to further reduce CTC problems to directed congruency-constrained minimum
cut problems, for which efficient algorithms are known for the case of the modulus m being a constant prime
power [NSZ19]. In CTC problems, we call the constraint (iii) the congruency constraint, and we refer to the
problem obtained after dropping that constraint as the relaxation of the CTC problem.

We start by showing the reduction from normalized CCTU problems to CTC problems. More concretely,
to every normalized CCTU problem min{c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0} with T being
the transpose of a network matrix and such that T does not contain identical rows (otherwise, one row of
the identical rows corresponds to a redundant constraint and can be deleted), we associate the following
CTC problem: The tree (V,U) and the extra arc set A ⊆ V × V are those coming with the network
constraint matrix through Definition 2.31, b : A→ Z≥0 is the right-hand side vector of the CCTU problem
(which is non-negative because we assume the CCTU problem to be normalized), α : V → Z is defined by
α(v) := γ(δ+(v))− γ(δ−(v)) for all v ∈ V , and costs c as well as r and m are left unchanged.14 To relate
feasible solutions of CCTU problems and the associated CTC problem, we prove the following result.

Lemma 2.41. Consider a normalized CCTU problem whose constraint matrix has no identical rows and is
the transpose of a network matrix, and the associated CTC problem. Let S1, . . . , S` ⊆ V with δ−(Si) = ∅
for all i ∈ [`], and define x =

∑`
i=1 χ

δ+(Si). Then x is a feasible CCTU solution if and only if S1, . . . , S` is
a feasible CTC solution. Moreover, if both are feasible, their objective value is the same.

The main ingredient in Lemma 2.41 is to relate inequality constraints of the CCTU problem and the
constraints (ii) in the associated CTC problems. We use this relation again later, and hence, state it
independently here before using it to prove Lemma 2.41.

Lemma 2.42. Let (V,U) be a directed spanning tree, let S1, . . . , S` ⊆ V with δ−(Si) = ∅ for all i ∈ [`],
and denote x =

∑`
i=1 χ

δ+(Si). Then for any v, w ∈ V , the vector tvw ∈ {−1, 0, 1}U defined by

∀u ∈ U : tvw(u) =

1 if the unique v-w path in U passes through u forwardly,
0 if the unique v-w path in U does not pass through u,
−1 if the unique v-w path in U passes through u backwardly

satisfies t>vwx = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}|.

14Assuming that T does not contain identical rows implies that no parallel arcs are needed in A, which justifies the assumption
A ⊆ V × V .

31

2 Congruency-constrained TU problems beyond the bimodular case

Proof. By definition of x, we have that

t>vwx =
∑̀
i=1

∑
u∈δ+(Si)

tvw(u) .

For fixed i ∈ [`] and by definition of tvw, the non-zero terms in the inner sum correspond to edges u that are
oriented from a vertex outside Si to a vertex inside Si, and that lie on the unique v-w path P in U . Recall
that δ−(Si) = ∅, hence the sum in fact has one non-zero term for every time the path P crosses from one
side of Si to the other. More precisely, there is a term +1 for every time the path P crosses from a vertex
inside Si to one outside Si, and a term −1 for every time the path P crosses from a vertex outside Si to one
inside Si. Consequently, the total value of the sum only depends on where the start- and endpoints v and w
are located with respect to Si: If v ∈ Si and w /∈ Si, for example, P will cross from a vertex inside Si to
one outside Si one more time than the other way round, hence the sum will be +1. Generally, we get that∑

u∈δ+(Si)
tvw(u) = 1v∈Si − 1w∈Si , and thus

t>vwx =
∑̀
i=1

(
1v∈Si − 1w∈Si

)
=
∑̀
i=1

1v∈Si −
∑̀
i=1

1w∈Si = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| .

Proof of Lemma 2.41. We start by showing that x is feasible for the inequality system Tx ≤ b of the CCTU
problem if and only if S1, . . . , S` is feasible for constraint (ii) of the CTC problem. To this end, consider a row
of the constraint matrix T that is indexed by the arc a = (v, w) ∈ A×A, and note that this row is precisely
the vector t>vw, with tvw as defined in Lemma 2.42. Consequently, the corresponding constraint t>vwx ≤ ba of
the CCTU problem is, by Lemma 2.42, equivalent to |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| ≤ ba, which
is one of the constraints in (ii) in the CTC problem (namely the one for the arc a = (v, w) ∈ A). Thus, we
conclude that Tx ≤ b is equivalent to constraint (ii) in the CTC problem. Next, we observe that

∑̀
i=1

α(Si) =
∑̀
i=1

∑
v∈Si

(
γ(δ+(v))− γ(δ−(v))

)
=
∑̀
i=1

(
γ(δ+(Si))− γ(δ−(Si))

)
=
∑̀
i=1

γ>χδ
+(Si) = γ>x ,

and hence
∑`

i=1 α(Si) ≡ r (mod m) if and only if γ>x ≡ r (mod m). Together, we obtain that x is a
feasible CCTU solution if and only if S1, . . . , S` is a feasible CTC solution. To finish the proof of the lemma,
we observe that the objectives of the CCTU solution x and the CTC solution S1, . . . , S` are equal because
c>x =

∑`
i=1 c

>χδ
+(Si) =

∑`
i=1 c(δ

+(Si)).

By showing that for any feasible CCTU solution x, there exist sets S1, . . . , S` ⊆ V with δ−(Si) = ∅ and
x =

∑`
i=1 χ

δ+(Si), and combining this with Lemma 2.41, we thus obtain the following.

Lemma 2.43. Consider a normalized CCTU problem whose constraint matrix has no identical rows and is
the transpose of a network matrix, and the associated CTC problem as constructed above.

(i) For every feasible solution x of the CCTU problem, there is a feasible solution S1, . . . , S` of the CTC
problem with the same objective value such that x =

∑`
i=1 χ

δ+(Si).
(ii) For every optimal solution x of the CCTU problem, there is an optimal solution S1, . . . , S` of the CTC

problem such that x =
∑`

i=1 χ
δ+(Si).

Proof. (i) Note that because (V,U) is a tree, for every u ∈ U , there is a unique cut Cu ⊆ V with
δ+(Cu) = {u} and δ−(Cu) = ∅. By definition, we have x =

∑
u∈U x(u)χδ

+(Cu). Consequently,
by Lemma 2.41, the collection consisting of x(u) times the set Cu for all u ∈ U is a feasible CTC
solution, and its objective value is the same as the objective value of x in the CCTU problem.

32

2.4 Solving base block problems

(ii) By part (i), it is enough to prove that the associated CTC problem does not have solutions with objective
value less than the value c>x of x. If there was such a CTC solution, say S′1, . . . , S

′
`′ , of value strictly

less than c>x, then by Lemma 2.41, we know that x′ =
∑`′

i=1 χ
δ+(S′i) is a feasible CCTU solution of

the same objective value—but this is a contradiction, since we assumed x to be optimal for the CCTU
problem.

In other words, the above immediately implies that CCTU problems can be reduced to CTC problems.

Corollary 2.44. Every normalized CCTU problem whose constraint matrix has no identical rows and is the
transpose of a network matrix can be strongly polynomially reduced to the associated CTC problem (i.e., the
CTC problem can be obtained in strongly polynomial time), and any optimal CTC solution can in strongly
polynomial time be transformed to an optimal CCTU solution.

Proof. The CTC problem associated to a CCTU problem can be constructed in strongly polynomial time,
in particular because from the constraint matrix T , the tree T = (V,U) and the extra arcs A ⊆ V × V
can be obtained in polynomial time (in the encoding size of T) through Lemma 2.32. Lemma 2.43 (ii)
shows that optimal solutions of the CCTU problem and the CTC problem have the same values. Moreover,
by Lemma 2.41, any solution S1, . . . , S` of the CTC problem immediately gives a feasible solution x =∑`

i=1 χ
δ+(Si) of the CCTU problem with the same value (and note that x can be computed in strongly

polynomial time). Thus if S1, . . . , S` is optimal for the CTC problem, then so is x for the CCTU problem.

We remark that the above reduction gives CTC instances with α(V) = 0. It turns out that because the
underlying graph (V,U) is a tree, this condition is enough to uniquely determine corresponding values
γ : U → Z such that α(v) = γ(δ+(v)) − γ(δ−(v)) for all v ∈ V , which allows us to also reduce CTC
problems to CCTU problems in that case. As for our purposes, the direction covered by Corollary 2.44 is
enough, we leave the details of this argument to the reader. To be able to exploit the reduction given in
Corollary 2.44, we continue with studying the structure of CTC solutions in more detail, with the goal to
identify patterns that help for finding optimal CTC solutions efficiently.

Lemma 2.45. Consider a CTC problem and let S1, . . . , S` be a feasible solution. Then there exists a feasible
solution T1, . . . , T` such that T` ⊆ T`−1 ⊆ . . . ⊆ T1 and

∑`
i=1 χ

δ+(Si) =
∑`

i=1 χ
δ+(Ti).

Proof. If for all j, k ∈ [`], we have Sj ⊆ Sk or Sk ⊆ Sj , there is nothing to prove, because relabeling the sets
to satisfy S` ⊆ S`−1 ⊆ . . . ⊆ S1 will give the desired solution. Thus, assume that there are two sets Sj and
Sk for j, k ∈ [`] such that Sj 6⊆ Sk and Sk 6⊆ Sj . We claim that removing the sets Sj , Sk from the solution
and adding the sets in Sj ∪ Sk and Sj ∩ Sk instead gives another feasible solution for the CTC problem such
that the sum

∑`
i=1 χ

δ+(Si) is unchanged. To see this, observe the following:
• δ−(Sj ∪ Sk) = δ−(Sj ∩ Sk) = ∅ because an arc entering the union or intersection of the two sets

would enter at least one of the sets, but we know that δ−(Sj) = δ−(Sk) = ∅. Thus, δ−(Si) = ∅ holds
for all Si in the new solution.

• For any vertex v ∈ V , the number of sets in the solution that contain v is invariant under replacing two
sets with their union and intersection, hence the left-hand side of any constraint in condition (ii) of
CTC problems remains the same, and thus the constraints in condition (ii) of CTC problems holds for
the new solution, as well.

• We have α(Sj) + α(Sk) = α(Sj ∪ Sk) + α(Sj ∩ Sk), so the congruency-constraint is fulfilled by the
new solution if and only if the initial solution fulfilled it.

• Finally, it generally holds that

χδ
+(Sj) + χδ

+(Sk) = χδ
+(Sj∪Sk) + χδ

+(Sj∩Sk) + χU(Sj\Sk,Sk\Sj) + χU(Sk\Sj ,Sj\Sk) ,

where, for vertex sets V1, V2 ⊆ V , we denote by U(V1, V2) ⊆ U all arcs of U with tail in V1 and head
in V2. Because δ−(Sj) = δ−(Sk) = ∅, we have U(Sj \Sk, Sk \Sj) = U(Sk \Sj , Sj \Sk) = ∅, which

33

2 Congruency-constrained TU problems beyond the bimodular case

implies that the last two terms of the right-hand side above are zero. Consequently, χδ
+(Sj)+χδ

+(Sk) =
χδ

+(Sj∪Sk) + χδ
+(Sj∩Sk), and thus the sum

∑`
i=1 χ

δ+(Si) is unchanged under the replacement step, as
well.

Thus, as long as there are two sets Sj and Sk such that Sj 6⊆ Sk and Sk 6⊆ Sj , we can replace them by Sj ∪Sk
and Sj ∩ Sk while maintaining feasibility for the CTC problem and not changing the sum

∑`
i=1 χ

δ+(Si). To
see that this procedure ends, note that in any step, the potential function Φ(S1, . . . , S`) :=

∑`
i=1 |Si|2 ∈

Z strictly increases. The latter follows from the fact that, for any two sets A and B, we always have
|A|2 + |B|2 < |A ∩B|2 + |A ∪B|2. Obviously, Φ(S1, . . . , S`) ≤ `|V |2, so the procedure terminates after
less than `|V |2 many steps with a solution that has the desired properties.

In the next lemma, we prove that in CTC problems that are obtained via a reduction from CCTU problems,
there even exist optimal solutions that consist of a chain S` ⊆ . . . ⊆ S1 with a bounded number of sets,
namely ` ≤ m− 1. This closely links back to our general proximity result, Theorem 2.11, from which we
know that a normalized CCTU problem has an optimal solution x∗ such that for any vector d ∈ Zn that is
TU-appendable to the constraint matrix T , we have d>x∗ ≤ m− 1. In the proof of the following lemma, we
show that the optimal CTC solution corresponding to such a CCTU solution x∗ has the desired properties.

Lemma 2.46. Consider a normalized CCTU problem with modulus m whose constraint matrix has no
identical rows and is the transpose of a network matrix. Then, the associated CTC problem has an optimal
solution S1, . . . , S` such that S` ⊆ S`−1 ⊆ . . . ⊆ S1 and ` ≤ m− 1.

Proof. Let x∗ be an optimal solution of the CCTU problem such that for every vector d ∈ Zn that is TU-
appendable to the constraint matrix T , we have d>x∗ ≤ m− 1. Such a solution exists due to Theorem 2.11
because the CCTU problem is normalized, and hence x0 = (0 0 . . . 0)> ∈ Zn is an optimal solution of
its relaxation. By Lemma 2.43, there exists an optimal solution S1, . . . , S` of the associated CTC problem
such that x∗ =

∑`
i=1 χ

δ+(Si), and by Lemma 2.45, we may even choose the sets Si ⊆ V such that they
form a chain, i.e., S` ⊆ S`−1 ⊆ . . . ⊆ S1. Moreover, we may assume that Si 6= ∅ and Si 6= V for all
i: Such sets could be removed from the solution family without affecting feasibility of the solution (the
left-hand sides of constraints in point (ii) of CTC problems will remain the same, and because α(∅) = 0
and α(V) =

∑
v∈V α(v) =

∑
v∈V γ(δ+(v)) − γ(δ−(v)) = 0, the congruency constraint will still be

satisfied, as well) and the objective value (which is the same because δ+(V) = δ+(∅) = ∅, and thus
c(δ+(V)) = c(δ+(∅)) = 0).

We claim that with the above assumptions, we have ` ≤ m−1. To see this, choose v ∈ S1 and w ∈ V \S`.
Note that such v and w exist by the assumption that Si 6= ∅ and Si 6= V for all i ∈ [`]. Let tvw ∈ {−1, 0, 1}U
be defined as in Lemma 2.42, where (V,U) is the directed tree indexing the columns of the constraint matrix
T of the CCTU problem according to Definition 2.31. By definition, tvw is TU-appendable to the matrix T ,
as we can add the arc (v, w) to the arc (multi-)set indexing the rows of T according to Definition 2.31 and
thereby obtain that the matrix T with extra row tvw is the transpose of a network matrix again, and hence
TU. Consequently, by the choice of the optimal solution x∗, we have t>vwx

∗ ≤ m − 1. On the other hand,
Lemma 2.42 implies that

t>vwx
∗ = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| = ` ,

because by choice of v and w, all sets Si contain v, but none of them contain w. Altogether, this gives
` ≤ m− 1, as desired.

Thus, by Lemma 2.45, it is enough to find an optimal solution of a CTC problem associated to a CCTU
problem such that the sets in the solution form a chain of (at most) m− 1 cuts. This bounded number of cuts
allows for a reduction to submodular minimization problems with congruency constraints of the following
type.

34

2.4 Solving base block problems

Congruency-Constrained Submodular Minimization (CCSM): Given a submodular function
f : L → Z defined on a lattice L ⊆ 2N , γ : N → Z, m ∈ Z>0, and r ∈ {0, . . . ,m − 1}, find a
minimizer of min{f(C) : C ∈ L, γ(C) ≡ r (mod m)}.

Such problems were studied by Nägele, Sudakov, and Zenklusen [NSZ19], where an algorithm for solving
problems of this kind ifm is a constant prime power modulus was presented. We remark that [NSZ19] studies
a slightly less general setup than stated above, namely γ ≡ 1, where the constraint γ(S) ≡ r (mod m)
translates to |S| ≡ r (mod m). For that case, algorithms with running time |N |2m+O(1) were presented.
However, the setting with general γ can be readily reduced to that with γ ≡ 1 by replacing every element
v ∈ N by t = (γ(v) mod m) many elements v1, . . . , vt with γ(vi) = 1 and updating the lattice and the
function correspondingly. Observing that this reduction blows up the ground set by a factor of at most m, we
thus get the following immediate generalization of Theorem 1.1 in [NSZ19].

Theorem 2.47. For any prime power m ∈ Z>0, CCSM problems can be solved in time (m|N |)2m+O(1).

It remains to discuss our reduction from CTC problems to CCSM problems.

Lemma 2.48. Consider a CTC problem with constant modulus m. Finding a feasible solution of minimum
cost among all solutions that consist of at most m− 1 sets S1, . . . , S` with S` ⊆ S`−1 ⊆ . . . ⊆ S1 can be
strongly polynomially reduced to a CCSM problem with modulus m, i.e., the CCSM problem can be obtained
in strongly polynomial time, and an optimal solution of that problem can be transformed to an optimal CTC
solution in strongly polynomial time.

Proof. Consider a CTC instance with the usual notation. We construct a CCSM instance on a ground set N
with a lattice L ⊆ 2N whose sets correspond to feasible solutions of the relaxation of the given CTC problem
that have the desired chain structure. Moreover, we show that the function f : L → Z assigning to each set in
L the value of the corresponding CTC solution is a modular function. The last step will then be to observe
that we can define a congruency constraint of the type appearing in CCSM problems that is equivalent to the
congruency constraint in the CTC problem.

Let the ground set N consist of m − 1 copies of the vertex set V of the tree in the CTC instance, i.e.,
N :=

⋃m−1
i=1 Vi, where Vi = {vi : v ∈ V }. Subsets C ⊆ N are in one-to-one correspondence with set

families S1, . . . , S` ⊆ V that satisfy ` ≤ m− 1 as follows: Given C, the corresponding set family is given
by Si = {v ∈ V : vi ∈ C}, and vice versa, given a set family S1, . . . , S` with ` ≤ m− 1, the corresponding
subset of N is C =

⋃`
i=1{vi : v ∈ Si}. Now let us define a set L ⊆ 2N such that C ⊆ N is in L if and only

if all three of the following are satisfied:

(i) If vi ∈ C for some v ∈ V and i ∈ [m− 1], then vj ∈ C for all j ≤ i.
(ii) For every (v, w) ∈ U , if wi ∈ C for some i ∈ [m− 1], then vi ∈ C.

(iii) For every (v, w) ∈ A, if vi ∈ C and i− ba ≥ 1, then wi−ba ∈ C.

Claim 2.49. Sets C ∈ L are precisely those subsets of N that correspond to set families S1, . . . , S` with
` ≤ m− 1 that have chain structure S` ⊆ . . . ⊆ S1 and are feasible solutions of the relaxation of the given
CTC problem.

To see the claim, we start by observing that a set C ⊆ N satisfies (i) if and only if the corresponding sets
S1, . . . , S` satisfy Si ⊆ Sj for all i ≥ j: If C satisfies (i), then v ∈ Si, we get vi ∈ C, which implies vj ∈ C
because i ≥ j, and thus v ∈ Sj . For the other way round, if Si ⊆ Sj for all i ≥ j, then if vi ∈ C for some
v ∈ V and i ∈ [m− 1], we have v ∈ Si, and thus for all i ≥ j, it follows that v ∈ Sj , and thus vj ∈ C.

Next, (ii) is satisfied by C ⊆ N if and only if the corresponding sets S1, . . . , S` satisfy δ−(Si) = ∅: C
does not satisfy (ii) if and only if there exist (v, w) ∈ U and i ∈ [m− 1] such that wi ∈ C, but vi /∈ C. But
the latter is equivalent to w ∈ Si but v /∈ Si, i.e., δ−(Si) 6= ∅.

35

2 Congruency-constrained TU problems beyond the bimodular case

Finally, consider a set C satisfying (i) above. We show that the corresponding sets S1, . . . , S` then satisfy
constraint (ii) of CTC problems if and only if C also satisfies (iii) above. To start with, note that by the
previous arguments, we know that because C satisfies (i), we have S` ⊆ . . . ⊆ S1. Consequently,

|{i ∈ [`] : v ∈ Si}| = max{i ∈ [m− 1] : vi ∈ C} ∀v ∈ V ,

hence a constraint of the form |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| ≤ ba for some a = (v, w) ∈ A is
satisfied if and only if max{i ∈ [m − 1] : vi ∈ C} −max{i ∈ [m − 1] : wi ∈ C} ≤ ba, which in turn is
guaranteed to hold if and only if C satisfies (iii) above, as desired. This proves Claim 2.49.

Claim 2.50. L is a lattice.

To prove this claim, we show that for any C1, C2 ∈ L, we also have C1 ∩ C2 ∈ L and C1 ∪ C2 ∈ L. We
do so by showing that the intersection and union satisfy (i) to (iii) above. Note that all three conditions are of
the form “If a ∈ C, then b ∈ C”, for different choices of a, b ∈ N . It is generally true that if such conditions
hold for two sets C1 and C2, then they also hold for C1 ∩ C2 and C1 ∪ C2: If a ∈ C1 ∩ C2, then a ∈ C1 and
a ∈ C2, hence also b ∈ C1 and b ∈ C2, and thus b ∈ C1 ∩ C2. Also, if a ∈ C1 ∪ C2, then there is ε ∈ {0, 1}
such that a ∈ Cε, hence also b ∈ Cε, and thus b ∈ C1 ∪ C2. This proofs Claim 2.50.

As already indicated above, let f : L → Z be defined as follows: For C ∈ L, if S1, . . . , S` is the
corresponding solution of the relaxation of the CTC problem, then f(C) =

∑m−1
i=1 c(δ+(Si)). In other words,

f assigns to each C ∈ L the objective value of the corresponding CTC solution.
We claim that for any two sets C,D ∈ L, we have f(C) + f(D) = f(C ∩D) + f(C ∪D). To this end,

observe that if S1, . . . , S` ⊆ V correspond to C and T1, . . . , T
′
` ⊆ V correspond to D, we may introduce

S`+1 = . . . = Sm−1 = ∅ and T`′+1 = . . . = Tm−1 = ∅ and then obtain

f(C)+f(D) =

m−1∑
i=1

c(δ+(Si))+c(δ+(Ti)) =

m−1∑
i=1

c(δ+(Si∩Ti))+c(δ+(Si∪Ti)) = f(C∩D)+f(C∪D) ,

where the middle inequality exploits that χδ
+(Si) + χδ

+(Ti) = χδ
+(Si∩Ti) + χδ

+(Si∪Ti), which holds because
δ−(Si) = δ−(Ti) = ∅ for i ∈ {1, . . . ,m − 1} due to the fact that S1, . . . , S` and T1, . . . , T`′ are feasible
solutions for the relaxation of the CTC problem and thus satisfy constraint (i) of that problem type.

Finally, define γ : C → Z by γ(vi) = α(v) for all v ∈ V and i ∈ [m − 1]. This implies that for any
C ∈ L and a corresponding solution S1, . . . , S` of the CTC problem’s relaxation,

γ(C) =
m−1∑
i=1

γ(C ∩ Si) =
∑̀
i=1

α(Si) ,

and hence γ(C) ≡ r (mod m) if and only if
∑`

i=1 α(Si) ≡ r (mod m).
Altogether, we obtain that C is an optimal solution of the CCSM problem given by N , L, f and γ if and

only if the corresponding sets S1, . . . , S` form an optimal solution of the CTC problem with chain structure
S` ⊆ . . . ⊆ S1 and ` ≤ m− 1. Observing that the CCSM problem can be obtained from the CTC problem in
strongly polynomial time (recall that m is assumed to be a constant), and that transforming a CCSM solution
to a CTC solution is immediate, finishes the proof.

Finally, combining Corollary 2.44 and Lemmas 2.45 and 2.48, we can conclude Theorem 2.40.

Proof of Theorem 2.40. Given a CCTU problem, by Corollary 2.44 it is enough to solve the associated CTC
problem. By Lemma 2.46, this problem has an optimal solution with chain structure and at most m− 1 cuts—
which is precisely the type of problem that can be strongly polynomially reduced to a congruency-constrained
submodular minimization problem by Lemma 2.48. Note that in these reductions, the modulus m of the
involved congruency-constraints is invariant, and m is a constant prime power by assumption. Hence, the
final congruency-constrained submodular minimization problem is one with constant prime power modulus.
Such problems can be solved in strongly polynomial time by Theorem 2.47.

36

2.4 Solving base block problems

2.4.3 Matrices stemming from particular constant-size matrices

To complete the study of base block CCTU problems, we now cover CCTU problems with constraint matrices
that fall into case (ii) of Theorem 2.14. In other words, we study matrices that can be obtained from the two
matrices

1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 and

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

 (2.16)

by repeatedly appending unit vector rows or columns, appending a copy of a row or column, and inverting
the sign of a row or column. More generally, our arguments apply to any constraint matrices that can be
obtained from constant-size matrices by repeatedly applying the aforementioned operations. More formally,
let us introduce the following notion of a core of a totally unimodular matrix.

Definition 2.51. Let T be a totally unimodular matrix. A submatrix of T is a core of T if it is a smallest
possible submatrix of T that can be obtained by iteratively deleting

(i) any row or column with at most one non-zero entry, or
(ii) any row or column appearing twice or whose negation is also in the matrix.

It can be observed that up to row and column permutations and sign changes of rows and columns, every
totally unimodular matrix has a unique core, which we denote by core(T). Still, let us remark that we do not
need uniqueness for our arguments and working with any core would be enough for us. In the context of
CCTU problems, we show the following theorem.

Theorem 2.52. CCTU problems with modulus m and a constraint matrix T that has a core of constant size
can be solved in strongly polynomial time

(i) by a randomized algorithm if the objective is unary encoded and m is constant, or
(ii) by a deterministic algorithm if m is a constant prime power.

In particular, Theorem 2.52 shows that CCTU problems with constant prime power modulus and constraint
matrices that fall into case (ii) of Theorem 2.14 can be solved in strongly polynomial time. Theorem 2.52
immediately follows from the following more concrete lemma by solving each of the mO(`) many CCTU
problems using Theorem 2.35 or Theorem 2.40.

Lemma 2.53. Consider a CCTU problem with modulus m and constraint matrix T , and let ` be the number
of columns of core(T). The CCTU problem can be reduced to mO(`) many CCTU problems, with constraint
matrices of size linear in the size of T , that are network matrices and transposes of network matrices at the
same time.

Proof. Assume that we are given a normalized CCTU problem, which has the form

min
{
c>x

∣∣ Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
,

where T is a matrix that is obtained as follows: Start from the matrix C = core(T) that has ` many columns,
and repeatedly append unit rows or columns, append a copy of a row or column, and invert the sign of a row
or column. In this process, we say that a row or column stems from C if it either is a row or column of C, or
it was obtained by copying a row or column that stems from C. Thus, we may rewrite the inequality system
in the form (

T 11 T 12

T 21 T 22

)(
x1

x2

)
≤
(
b1

b2

)
, (2.17)

37

2 Congruency-constrained TU problems beyond the bimodular case

where T 11 comprises the rows and columns of T that stem from C, and the remaining matrix as well as the
variables x and the right-hand side b are split accordingly. Note that while T is achieved as a construction
starting from the TU matrix C, we could also start from the totally unimodular matrix obtained from C by
appending a `× ` identity matrix, and then perform the same operations to obtain a totally unimodular matrix
of the form S 0

T 11 T 12

T 21 T 22

 . (2.18)

Here S has ` many rows s>i for i ∈ {1, . . . , `} where, without loss of generality, the support of s>i comprises
precisely those columns that stem from column i of C in the construction. Our approach is to guess the `
many scalar products s>i x

1 of an optimal solution x∗ = (x1 x2), and thereby reduce the problem to an easier
one.

To this end, note that the rows (s>i 0) are TU-appendable to the constraint matrix T because the matrix
in (2.18) is TU. Thus, because we work with a normalized problem, we know that there exists an optimal
solution x∗ = (x1 x2) of the CCTU problem such that s>i x

1 ∈ {−m+ 1, . . . ,m− 1} (see Theorem 2.11).
Consequently, it is enough to consider (2m− 1)` many combinations of values that these scalar products
may admit. Once we fix those values, we also know the value of T 11x1: Indeed, it is easy to see that every
row t of T 11 is a linear combination of the rows si, and hence t>x is a linear combination of s>i x. Thus, for
any guess σ = (σ1, . . . , σ`) of the ` many scalar products s>1 x

1, . . . , s>` x
1, and after computing τ = T 11x1,

we may rewrite the system (2.17) in the form
S 0
−S 0
0 T 12

T 21 T 22

(x1

x2

)
≤

σ
−σ
b1 − τ
b2

 . (2.19)

We claim that the new constraint matrix is a network matrix and the transpose of a network matrix at the
same time. To this end, observe that the matrix S 0

0 T 12

T 21 T 22

 (2.20)

can be obtained by performing the same steps as we perform to obtain the matrix in (2.18), but replacing the
entries of C with zeros in the starting matrix. This makes the starting matrix being a network matrix and the
transpose of a network matrix at the same time, and this property is invariant under the operations that we
perform when constructing the matrix. Thus, the matrix in (2.20) is a network matrix and the transpose of a
network matrix at the same time, and hence, so is the constraint matrix in (2.19).

To sum up, we reduce a CCTU problem with a constraint matrix that has core with ` columns, to (2m−1)`

many CCTU problems with constraint matrices that are a network matrix and the transpose of a network
matrix at the same time. Also note that the size of the new constraint matrix is linear in the size of the original
constraint matrix. This proves the lemma.

We remark that instead of guessing all ` many scalar products in the proof of Lemma 2.53, we could also
guess all but four of them: This would guarantee that the resulting constraint matrix of the reduced problems
has a core that consists of at most 4 rows, and hence does not fall into case (ii) of Theorem 2.14, and we can
fall back to another case for solving the reduced problems. In particular, when applying Lemma 2.53 to a
constraint matrix T falling into case (ii) of Theorem 2.14, guessing the scalar product of a single row would
be enough.

38

2.5 Further details of our approach to R-CCTUF problems

2.5 Further details of our approach toR-CCTUF problems

In this section, we fill in details and formal proofs supplementing the overview of our approach to R-CCTUF
problems given in Section 2.2.

2.5.1 Seymour’s decomposition of TU matrices

Theorem 2.14 is, up to the constraints nA, nB ≥ 2, one naturally equivalent way of stating Seymour’s
decomposition theorem for TU matrices (see, for example, [Sey80] or [Sch98]). The version presented in
Theorem 2.14 is a variation thereof that additionally guarantees lower bounds on the number of rows nA and
nB of the blocks A and B, respectively, obtained in 1-, 2-, and 3-sums, namely nA, nB ≥ 2. Similar bounds
were achieved by Artmann, Weismantel, and Zenklusen in [AWZ17]: They lower bound the number of rows
kA and kB of the two blocks A and B by 2—hence applying their theorem to the transpose of a TU matrix
gives the version that we need.

Although not exploited in our results, we remark that the method presented in [AWZ17] in fact allows for
obtaining the lower bounds on the number of columns and the number of rows of A and B simultaneously,
i.e., it can be guaranteed that in any 1-, 2-, and 3-sum, both matrices are at least 2× 2 matrices.

2.5.2 Patterns

Recall that if the constraint matrix of the R-CCTUF problem that we consider is a 1-, 2-, or 3-sum, the
problem can be written in the form(

A ef>

gh> B

)
·
(
xA
xB

)
≤
(
bA
bB

)
γ>AxA + γ>BxB ∈ R (mod m)

xA ∈ ZnA , xB ∈ ZnB ,

as also given in (2.1). After fixing α = f>xB and β = h>xA, the above problem splits into an A-problem
and a B-problem as in (2.2) (whose only link is through the original congruency constraint, which translates
into rA + rB ∈ R). Also recall that we let Π ⊆ Z2 denote all pairs (α, β) for which both the A-problem
and the B-problem are feasible, and that by Lemma 2.16 we know that if the initial problem is feasible,
then it is also feasible for a pair of scalar products (α, β) ∈ Π that additionally satisfy `0 ≤ α + β ≤ u0,
`1 ≤ α ≤ u1, `2 ≤ β ≤ u2 for bounds `i, ui that we can determine in strongly polynomial time, and that
satisfy ui − `i ≤ m− |R|. For this reason, we defined a narrowed down version of Π, namely

Πnarrowed := Π ∩ {(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2} , (2.21)

and only look for solutions with scalar products (α, β) ∈ Πnarrowed. We also remind the reader that a narrowed
pattern associated to the problem is given by π : Πnarrowed → 2{0,...,m−1}, where π(α, β) is the set of residues
rB ∈ {0, . . . ,m− 1} for which the B-problem is feasible.

The shape of pattern supports

In what follows, we prove the following lemma on the shape of Πnarrowed.

Lemma 2.54. In the above setup, we can in strongly polynomial time determine `′i, u
′
i for i ∈ {0, 1, 2} with

u′i − `′i ≤ m− |R| such that

Πnarrowed = {(α, β) ∈ Z2 : `′0 ≤ α+ β ≤ u′0, `′1 ≤ α ≤ u′1, `′2 ≤ β ≤ u′2} .

39

2 Congruency-constrained TU problems beyond the bimodular case

We emphasize that the main contribution of Lemma 2.54 is not to find new bounds `′i, u
′
i (they will simply

be the tightest bounds such that Πnarrowed is contained in the resulting set), but that there are no holes within
the shape given by the bounds. That is, there are no (α, β) satisfying the bounds, but such that there is no
feasible solution of our R-CCTUF problem with scalar products (α, β). It turns out that Π has the same
property in the following sense, and Lemma 2.54 will follow from that.

Lemma 2.55. For Π ⊆ Z2 defined as above, conv(Π) is a polyhedron with edge directions in D :=
{±(1

0),±(0
1),±

(
1
−1

)
}, i.e., there is an inequality description of all (α, β) ∈ Π that only consists of upper

and/or lower bounds on α, β, and α+ β.

We remark that when we refer to edge directions v of an integral polyhedron (with rational extremal rays
in case of unboundedness), then we always choose v to be integral, i.e., v ∈ Zn, and such that the greatest
common divisor of its coordinates is 1. In other words, a vector v ∈ Zn is an edge direction of an integral
polyhedron if there exist integral points x1 and x2 that lie on the same edge of P such that x1 = x2 + v, and
the greatest common divisor of all components of v is 1.

Proof of Lemma 2.54. From Lemma 2.55 and (2.21), it follows immediately that Lemma 2.54 holds for

`′0 = min{α+ β : (α, β) ∈ Πnarrowed} and u′0 = max{α+ β : (α, β) ∈ Πnarrowed} ,
`′1 = min{α : (α, β) ∈ Πnarrowed} and u′1 = max{α : (α, β) ∈ Πnarrowed} , and

`′2 = min{β : (α, β) ∈ Πnarrowed} and u′2 = max{β : (α, β) ∈ Πnarrowed} .

To see that we can determine `′i and u′i in strongly polynomial time, we exploit that by Observation 2.27,

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB

`0 ≤ h>xA + f>xB ≤ u0

`1 ≤ f>xB ≤ u1

`2 ≤ h>xA ≤ u2

is an inequality system with a totally unimodular constraint matrix. Here, the last three constraints precisely
encode the constraints (α = f>xB, β = h>xA) ∈ Πnarrowed, so pairs in Πnarrowed correspond to feasible
solutions of the above system, and vice versa. Due to total unimodularity, we can find integral solutions of this
system minimizing or maximizing the linear functions α = f>xB , β = h>xA, and α+ β = f>xB + h>xA
by solving the corresponding relaxations using the approach of Tardos [Tar86] in strongly polynomial time,
and the corresponding optimal values are precisely the values `′i and u′i for i ∈ {0, 1, 2} that we are looking
for, and we have u′i − `′i ≤ ui − `i ≤ m− |R| for all i ∈ {0, 1, 2}.

To prove Lemma 2.55, we will observe that Π can be seen to essentially be a projection of the set of
feasible solutions of the relaxation of the initial R-CCTUF problem. The following result will provide the
necessary properties to conclude Lemma 2.55.

Theorem 2.56. Let T ∈ {−1, 0, 1}n×k be a totally unimodular matrix, let b ∈ Zn, and let I ⊆ [n] be a
subset of the column indices. Then, the axis-parallel projection Q ⊆ RI of P := {x ∈ Rn : Tx ≤ b} on the
variables (xi)i∈I has the following property: For any edge direction v ∈ ZI of Q, and any w ∈ Zn that is
TU-appendable to T and supported on I , we have w>I v ∈ {−1, 0, 1}.

Here, for a vector w ∈ Rn and a subset I ⊆ [n], we denote by wI the restriction of w to the coordinate
indices in I . Generally, note that for I = [n], Theorem 2.56 is a statement about edge directions of polyhedra
that are defined by totally unimodular matrices, characterized in terms of TU-appendable vectors. This
shows another use of the concept of TU-appendable vectors and gives a result that might find independent
applications.

40

2.5 Further details of our approach to R-CCTUF problems

Proof of Theorem 2.56. Assume for the sake of deriving a contradiction that Q has an edge direction v ∈ RI

such that there exists a vector w ∈ Rn that is supported on I and TU-appendable to T such that w>I v /∈
{−1, 0, 1}. Let x1, x2 ∈ ZI lie on an edge of Q such that x1 = x2 + v, and observe that there exists
λ ∈ (0, 1) such that y := (1− λ)x1 + λx2 = x1 + λv is not integral, but satisfies w>I y = η for some η ∈ Z,
for example λ = 1/|w>I v|.

Now let y be a preimage of y under the axis-parallel projection from P to Q, and observe that y is a
fractional solution of the system

Tx ≤ b
w>x = η

,

which has a totally unimodular constraint matrix and integral right-hand sides, which implies that it describes
an integral polyhedron. Thus, y can be written as a convex combination y =

∑k
i=1 λizi of integral vectors

zi ∈ {x ∈ Zn : Tx ≤ b, w>x = η}, with coefficients λi ∈ (0, 1) such that
∑k

i=1 λi = 1. Let zi ∈ ZI be
obtained from zi through axis-parallel projection to RI . Hence, zi ∈ Q ∩ ZI , w>I zi = η, and y =

∑k
i=1 λizi.

Thus, we expressed y as a convex combination of points zi ∈ Q. But recall that y lies on an edge of Q,
and the only way to express such a point as a convex combination of others with non-zero coefficients is
to use points from the same edge only, hence all zi lie on the same edge. However, as the edge direction
is v and w>I v 6= 0, the point y is the only point on the edge satisfying w>I x = η, so we must have zi = y
for all i ∈ [k]. This contradicts that zi are integral, while y is not. Thus, our assumption was wrong and
Theorem 2.56 follows.

Proof of Lemma 2.55. Note that Π contains precisely those pairs (α, β) ∈ Z2 for which there exist (xA, xB) ∈
ZnA × ZnB such that (xA, xB, α, β) is a solution of the system

A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1

xA
xB
α
β

≤
≤
=
=

bA
bB
0
0

 . (2.22)

In other words, Π contains all integral points in the axis-parallel projection of the polyhedron P defined
by (2.22) to the variables (α, β). Observe that the constraint matrix T in (2.22) is totally unimodular by
Observation 2.27, so by Theorem 2.56 applied with I containing the indices of the variables α and β, we
obtain that all edge directions v ∈ Z2 ofQ := conv(Π) (which is precisely the projection of P to the variables
(α, β) because P is integral) satisfy that for any integral vector w that is TU-appendable to T with support
on the last two columns only, we have w>I v ∈ {−1, 0, 1}. Obviously, the unit vectors w ∈ {±eα,±eβ}
(i.e., the vectors that are all zero except for ±1 entries in corresponding to the variables α and β, and hence
correspond to wI ∈ {±(1

0),±(0
1)}, respectively) are TU-appendable, and we claim that w = ±(eα + eβ)

(corresponding to wI = ±(1
1)) are, as well.

Assuming this claim, the conclusion is immediate: We know that all edge directions v ∈ Z2 of Q are such
that w>I v ∈ {−1, 0, 1} for all wI ∈ {±(1

0),±(0
1),±(1

1)}. This leaves v ∈ {±(1
0),±(0

1),±
(

1
−1

)
} as the

only possible feasible edge directions, and hence the polyhedron Q can be described by inequalities bounding
α, β, and α + β from above and/or below, as claimed by Lemma 2.55. Thus, we conclude the proof by
showing the claim. To this end, define the three matrices

T ′ :=

A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1
0 0 1 1

 , T ′′ :=

A ef>

gh> B
0 f>

h> 0

 , and T ′′′ :=

A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1
h> f> 0 0

 .

The matrices T ′′ and T ′′′ are auxiliary matrices we use in the following. To show the claim we need to
show that T ′ is totally unimodular. Indeed, this will show TU-appendability of both (1

1) and
(−1
−1

)
because

41

2 Congruency-constrained TU problems beyond the bimodular case

changing the sign of a row preserve total unimodularity of a matrix. To this end, consider any square
submatrix S = T ′IJ of T ′, for two index subsets I and J . If I does not contain all of the last three rows, we
can perform a Laplace expansion of the determinant along unit rows and columns, which will suffice to get
rid of the last two columns and the last row of T ′ (if they are present in S), and get that the determinant of S
equals the determinant of a square submatrix of T ′′ in absolute value. But T ′′ is totally unimodular due to
Observation 2.27, and hence the determinant of the submatrix that we are considering is in {−1, 0, 1}. If,
on the other hand, S = T ′IJ contains all of the last three rows, we know that its determinant is equal to the
determinant of the submatrix of S′ = T ′′′IJ , where T ′′′ is obtained from T ′ by adding the penultimate and
third to last row to the last one. This operation does not change determinants, i.e., det(S) = det(S′). But
T ′′′ is totally unimodular by Observation 2.27, and hence det(S′) ∈ {−1, 0, 1}. In both cases, we obtain
det(S) ∈ {−1, 0, 1}, so T ′ is totally unimodular.

An averaging lemma and linear patterns

In the proof of Theorem 2.56, one key idea was to average two integral solutions x1 and x2 to obtain
a fractional solution that has an integral scalar product with some TU-appendable vector w, and then
decompose that fractional solution into other feasible vectors that have the same integral scalar product
with w. This idea can also be exploited to obtain the following result. Here, for an R-CCTUF problem of
the form given in (2.1) (or its relaxation), we say that an R-CCTUF solution (or solution to its relaxation)
x = (xA, xB) ∈ ZnA × ZnB is a solution for (α, β) ∈ Z2 if f>xB = α and h>xA = β.

Lemma 2.57 (Averaging Lemma). Consider the relaxation of an R-CCTUF problem of the form given
in (2.1). Let x1 and x2 be solutions for (α1, β1) and (α2, β2), respectively. Then, there exist solutions x3 and
x4 for (α3, β3) and (α4, β4), respectively, such that x1 + x2 = x3 + x4, as well as⌊

α1 + α2

2

⌋
≤ α3, α4 ≤

⌈
α1 + α2

2

⌉
,

⌊
β1 + β2

2

⌋
≤ β3, β4 ≤

⌈
β1 + β2

2

⌉
,

and
⌊
α1 + β1 + α2 + β2

2

⌋
≤ α3 + β3, α4 + β4 ≤

⌈
α1 + β1 + α2 + β2

2

⌉
.

(2.23)

Proof. Consider the linear inequality system

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB⌊

1
2(α1 + β1 + α2 + β2)

⌋
≤ h>xA + f>xB ≤

⌈
1
2(α1 + β1 + α2 + β2)

⌉⌊
1
2(α1 + α2)

⌋
≤ f>xB ≤

⌈
1
2(α1 + α2)

⌉⌊
1
2(β1 + β2)

⌋
≤ h>xA ≤

⌈
1
2(β1 + β2)

⌉
(2.24)

and note that the claim of the lemma is that this system has two integral solution x3 and x4 with x1 + x2 =
x3 + x4. To find these solutions, let T and q be such that Tx ≤ q is the system (2.24), and observe that T is
totally unimodular by Observation 2.27. Then, the system{

Tx ≤ q
T (x1 + x2 − x) ≤ q

(2.25)

also has a totally unimodular constraint matrix, and z := 1
2(x1 + x2) is a (potentially fractional) solution

of it. Because the bounds in the inequality constraints are all integral, we conclude that the linear system
in (2.25) also has an integral solution x3. Additionally, by symmetry it is immediate that x4 := x1 + x2 − x3

is another integral solution. In particular, we thus found x3 and x4 that are feasible for (2.24), and they satisfy
x1 + x2 = x3 + x4, as desired.

42

2.5 Further details of our approach to R-CCTUF problems

The above averaging lemma gives us a tool to analyze (narrowed) patterns π : Πnarrowed → 2{0,...,m−1},
because if the difference of (α1, β1) and (α2, β2) is large enough, the inequalities in Lemma 2.57 will make
sure that (α3, β3) and (α4, β4) are different from (α1, β1) and (α2, β2), and hence also the solutions x3

and x4 are different from x1 and x2. Still, the relation x1 + x2 = x3 + x4 allows us to draw conclusions
about feasible residues in π(α3, β3) and π(α4, β4), and in particular relate them to residues in π(α1, β1)
and π(α2, β2). We start by applying these ideas to narrowed patterns π that satisfy |π(α, β)| = 1 for all
(α, β) ∈ Πnarrowed. Again, we use the notation

D :=

{
±
(

1
0

)
,±
(

0
1

)
,±
(

1
−1

)}
to denote the set of potential edge directions of conv(Πnarrowed).

Lemma 2.58. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1}, and let d1, d2 ∈ D, (α, β) ∈ Z2

such that (α, β) + ε1d1 + ε2d2 ∈ Πnarrowed for all ε1, ε2 ∈ {0, 1}, and let rε1,ε2 ∈ {0, . . . ,m− 1} be such
that π((α, β) + ε1d1 + ε2d2) = {rε1,ε2} for all ε1, ε2 ∈ {0, 1}. Then r1,1 − r0,1 ≡ r1,0 − r0,0 (mod m).

Proof. We first observe that we can assume without loss of generality that either d1 = d2, or

{d1, d2} ∈
{{(

1
0

)
,

(
0
1

)}
,

{(
1
0

)
,

(
1
−1

)}
,

{(
0
1

)
,

(
−1
1

)}}
.

Indeed, the above situation can always be achieved by changing the sign of d1 and/or d2. Changing the sign
of d1 can be done by choosing (α′, β′) = (α, β) + d1 and the directions d′1 = −d1 and d′2 = d2, as we have
{(α′, β′) + ε1d

′
1 + ε2d

′
2 : ε1, ε2 ∈ {0, 1}} = {(α, β) + ε1d1 + ε2d2 : ε1, ε2 ∈ {0, 1}}, and the statement that

we want to show transforms accordingly. Analogously, we may also change the sign of d2.
Now let x1 be a solution for (α1, β1) = (α, β), and let x2 be a solution for (α2, β2) = (α, β) + d1 + d2.

Applying Lemma 2.57 to these solutions, we obtain that there exist solutions x3 and x4 for (α3, β3) and
(α4, β4), respectively, such that x1 + x2 = x3 + x4, and the inequalities in (2.23) are satisfied. On a
case-by-case basis, it is immediate to see that with the above assumptions, the inequalities in (2.23) imply
that (α3, β3), (α4, β4) ∈ {(α, β) + d1, (α, β) + d2}. Moreover, because x1 + x2 = x3 + x4 also implies
(α1, β1) + (α2, β2) = (α3, β3) + (α4, β4), we must even have {(α3, β3), (α4, β4)} = {(α, β) + d1, (α, β) +
d2}. We thus assume without loss of generality that (α3, β3) = (α, β) + d1 and (α4, β4) = (α, β) + d2.

By definition, we then have r0,0 = γ>Bx
1
B , r1,0 = γ>Bx

3
B , r0,1 = γ>Bx

4
B , and r1,1 = γ>Bx

2
B . The equality

x1 + x2 = x3 + x4 also implies x1
B + x2

B = x3
B + x4

B , and hence

r1,1 − r0,1 ≡ γ>Bx2
B − γ>Bx4

B = γ>Bx
3
B − γ>Bx1

B ≡ r1,0 − r0,0 (mod m) ,

as desired.

In what follows, for any (α1, β1), (α2, β2) ∈ Z2, we define

D(α1,β1),(α2,β2) :=

(α, β) ∈ Z2

∣∣∣∣∣∣∣
min{α1 + β1, α2 + β2} ≤ α+ β ≤ max{α1 + β1, α2 + β2}

min{α1, α2} ≤ α ≤ max{α1, α2}
min{β1, β2} ≤ β ≤ max{β1, β2}

 .

In particular, if (α1, β1), (α2, β2) ∈ Πnarrowed for some domain Πnarrowed of a narrowed pattern, then by
Lemma 2.55, we always also have D(α1,β1),(α2,β2) ⊆ Πnarrowed. Also, if (α3, β3) ∈ D(α1,β1),(α2,β2), then
D(α1,β1),(α3,β3) ⊆ D(α1,β1),(α2,β2).

Moreover, we define a distance notion for two pairs (α1, β1), (α2, β2) ∈ Z2 as follows: Consider the
graph G on Z2 where two points x, y ∈ Z2 are connected by an edge if and only if x− y ∈ D, and define the
distance between (α1, β1) and (α2, β2) to be the length of a shortest path in G that connects the two points.
It is easy to see that such a shortest path has all intermediate points within D(α1,β1),(α2,β2). Concretely, if
(α1, β1) and (α2, β2) are at distance t, there are d1, . . . , dt ∈ D such that

43

2 Congruency-constrained TU problems beyond the bimodular case

(i) (α1, β1) +
∑`

i=1 di ∈ D(α1,β1),(α2,β2) for all ` ∈ {1, . . . , t}, and
(ii) (α1, β1) +

∑t
i=1 di = (α2, β2).

Lemma 2.59. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} and a subset Π0 ⊆ Πnarrowed of the
form

Π0 =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
with |π(α, β)| = 1 for all (α, β) ∈ Π0, and let r(α, β) ∈ {0, . . . ,m− 1} be such that π(α, β) = {r(α, β)}.
Then, for every d ∈ D, there exists rd ∈ {0, . . . ,m− 1} such that for any (α, β) ∈ Π0 with (α, β) + d ∈ Π0,

r((α, β) + d)− r(α, β) ≡ rd (mod m) .

Proof. Fix d ∈ D. To derive the lemma, it is enough to show that for all pairs (α1, β1), (α2, β2) ∈ Π0 with
(α1, β1) + d, (α2, β2) + d ∈ Π0, we have

r((α1, β1) + d)− r(α1, β1) ≡ r((α2, β2) + d)− r(α2, β2) (mod m) . (2.26)

Note that if the distance between (α1, β1) and (α2, β2) is 0, there is nothing to show. Moreover, if that
distance is 1, then a corresponding shortest path connecting (α1, β1) and (α2, β2) consists of a single step
d′ ∈ D, i.e. (α2, β2) = (α1, β1) + d′, and (2.26) follows from applying Lemma 2.58 to (α1, β1) and the
directions d, d′ ∈ D.

More generally, let us assume by induction that (2.26) holds whenever the distance of (α1, β1) and (α2, β2)
is less than t, for some t ≥ 2, and take two such pairs of distance equal to t. Then, a corresponding shortest
path connecting the two points can be represented by d1, . . . , dt ∈ D. Let (α′, β′) = (α1, β1) + d1. By
applying Lemma 2.58 to (α1, β1) and the directions d, d1 ∈ D, we obtain

r((α1, β1) + d)− r(α1, β1) ≡ r((α′, β′) + d)− r(α′, β′) (mod m) . (2.27)

Note that this invocation of Lemma 2.58 requires (α1, β1) + d+ d1 ∈ Πnarrowed, which holds because of the
following: A shortest path P connecting (α1, β1) and (α2, β2) is insideD(α1,β1),(α2,β2), and shifting the whole
path by d gives a shortest path connecting (α1, β1) + d and (α2, β2) + d that is inside D(α1,β1)+d,(α2,β2)+d ⊆
Πnarrowed. Thus, in particular, because (α′, β′) is on P , (α′, β′) + d = (α1, β1) + d + d1 is on the shifted
path, and thus in Πnarrowed.

Additionally, because (α′, β′) and (α2, β2) are of distance at t− 1, the inductive assumption gives that

r((α′, β′) + d)− r(α′, β′) ≡ r((α2, β2) + d)− r(α2, β2) (mod m) . (2.28)

Together, (2.27) and (2.28) imply the desired (2.26), thus completing the inductive step.

Corollary 2.60. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} and a subset Π0 ⊆ Πnarrowed of
the form

Π0 =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
with |π(α, β)| = 1 for all (α, β) ∈ Π0, and let r(α, β) ∈ {0, . . . ,m− 1} be such that π(α, β) = {r(α, β)}.
Then, there exist r0, r1, r2 ∈ {0, . . . ,m− 1} such that for all (α, β) ∈ Π0,

r(α, β) ≡ r0 + r1α+ r2β (mod m) .

Proof. Fix (α0, β0) ∈ Π0. Then for any (α, β) ∈ Π0, there exists t ∈ Z≥0 and d1, . . . , dt ∈ D such that
(i) (α`, β`) := (α0, β0) +

∑`
i=1 di ∈ Π0 for all ` ∈ {1, . . . , t}, and (ii) (αt, βt) = (α, β). Now observe that

we can write

r(α, β) = r(α0, β0) +
t−1∑
i=0

r((αi, βi) + di)− r(αi, βi) .

44

2.5 Further details of our approach to R-CCTUF problems

By Lemma 2.59, we know that for every d ∈ D ∩ {d1, . . . , dt}, there exists rd ∈ Z such that r((αi, βi) +
d) − r(αi, βi) ≡ rd (mod m) for all i ∈ [t] with di = d. Observe that by definition, we must also have
r−d ≡ −rd (mod m), hence by aggregating terms in the above sum, we obtain

r(α, β) = r(α0, β0) + a · r(1
0) + b · r(0

1) + c · r(1
−1

) , (2.29)

where the coefficients a, b, c ∈ Z satisfy(
α
β

)
=

(
α0

β0

)
+ a ·

(
1
0

)
+ b ·

(
0
1

)
+ c ·

(
1
−1

)
. (2.30)

The latter equation follows from aggregating terms in the sum in (α, β) = (α0, β0) +
∑t

i=1 di. We now
distinguish two cases:

Case 1: One constraint in Π0 is tight for all points in Π0.
In this case, two among the three coefficients a, b, and c will be zero for any choice of (α, β) ∈ Π0. If
c = 0 is one of the zero coefficients, then (2.30) implies that a = α− α0 and b = β − β0, and (2.29)
gives that for all (α, β) ∈ Π0 we have

r(α, β) = r(α0, β0) + (α− α0) · r(1
0) + (β − β0) · r(0

1) ,

which is linear in α and β, as required. Otherwise, a = b = 0 and (2.30) implies that c = α− α0, and
hence by (2.29),

r(α, β) = r(α0, β0) + (α− α0) · r(1
−1

) ,

which is of the desired form, as well.

Case 2: No constraint in Π0 is tight for all points in Π0.
This implies that there is a pair (α′, β′) ∈ Π0 such that either

(i)
(
α′
β′

)
,
(
α′
β′

)
+ (1

0),
(
α′
β′

)
+ (0

1) ∈ Π0, or

(ii)
(
α′
β′

)
,
(
α′
β′

)
− (1

0),
(
α′
β′

)
− (0

1) ∈ Π0.

In the first case, we get

r(1
−1

) ≡ r ((α′, β′) + (1, 0))− r ((α′, β′) + (0, 1))

=
(
r ((α′, β′) + (1, 0))− r (α′, β′)

)
−
(
r ((α′, β′) + (0, 1))− r(α′, β′)

)
≡ r(1

0) − r(0
1) ,

and in the second case, we get

r(1
−1

) ≡ r ((α′, β′)− (0, 1))− r ((α′, β′)− (1, 0))

=
(
r(α′, β′)− r ((α′, β′)− (1, 0))

)
−
(
r(α′, β′)− r ((α′, β′)− (0, 1))

)
≡ r(1

0) − r(0
1) .

Note that this gives the same relation among the different vectors rd in both cases. Using this in (2.29)
together with the fact that (2.30) implies a+ c = α− α0 and b− c = β − β0, we obtain that for all
(α, β) ∈ Π0, we have

r(α, β) ≡ r(α0, β0) + a · r(1
0) + b · r(0

1) + c ·
(
r(1

0) − r(0
1)

)
= r(α0, β0) + (α− α0) · r(1

0) + (β − β0) · r(0
1) (mod m) ,

which is again a relation of the desired form.

45

2 Congruency-constrained TU problems beyond the bimodular case

Proof of Theorem 2.18

We actually prove a slightly more general version of Theorem 2.18, in order not only to apply it to linear
patterns π, but also to linear sub-patterns of a pattern π. To this end, let us formally repeat the definition of
sub-patterns.

Definition 2.61. Let π : Πnarrowed → 2{0,...,m−1} be a narrowed pattern stemming from anR-CCTUF problem
of the form given in (2.1). We say that π̃ : Π̃→ 2{0,...,m−1} is a sub-pattern of π if the following holds:

(i) Π̃ ⊆ Πnarrowed.
(ii) There are `i, ui ∈ Z for i ∈ {0, 1, 2} such that

Π̃ =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

(iii) π̃(α, β) ⊆ π(α, β) for all (α, β) ∈ Π̃.

Moreover, we say that a solution x = (xA, xB) of an R-CCTUF problem of the form given in (2.1) is
covered by a sub-pattern π̃ if γ>xB ∈ π̃(α, β) for α = f>xB and β = h>xA.

Theorem 2.62. Consider an R-CCTUF problem of the form given in (2.1), let π be an associated narrowed
pattern, and let π̃ be a linear sub-pattern of π with domain given by Π̃ = {(α, β) ∈ Z2 : `0 ≤ α + β ≤
u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2}, where `i, ui ∈ Z for i ∈ {0, 1, 2}. Then, we can in strongly polynomial
time determine r0, r1, r2 ∈ {0, 1, . . . ,m− 1} such that the R-CCTUF problem

AxA + ey1 ≤ bA
h>xA − y2 = 0

`0 ≤ y1 + y2 ≤ u0

`1 ≤ y1 ≤ u1

`2 ≤ y2 ≤ u2

γ>AxA + r1y1 + r2y2 ∈ r0 +R (mod m)
xA ∈ ZnA

y1 , y2 ∈ Z

(2.31)

has a feasible solution if and only if the original R-CCTUF problem has one that is covered by π̃. Moreover,
a solution of one problem can be transformed into one of the other in strongly polynomial time.

Proof. By Corollary 2.60, there exist r0, r1, r2 ∈ {0, . . . ,m − 1} such that r(α, β) := −r0 + αr1 + βr2

has the following property for each (α, β) ∈ Π̃: If xB is a solution of the B-problem for (α, β), then
γ>BxB ≡ r(α, β) (mod m). We claim that Theorem 2.62 holds for this choice of r0, r1, and r2.

To see this, first let (xA, xB) ∈ ZnA+nB be a solution of the original R-CCTUF problem that is covered
by π̃, i.e., a solution with scalar products (α, β) ∈ Π̃. We claim that (xA, α, β) is a solution of (2.31). Indeed,
feasibility for the original problem gives

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB
γ>AxA + γ>BxB ∈ R (mod m) ,

and the first constraint is equivalent to AxA + eα ≤ bA. Moreover, h>xA − β = 0 is satisfied by definition
of β, and the constraints in the third, forth, and fifth line of (2.31) are satisfied by (y1, y2) = (α, β)
because (α, β) ∈ Π̃. Finally, the congruency constraint is satisfied because γ>AxA − r0 + αr1 + βr2 =
γ>AxA + r(α, β) ≡ γ>AxA + γ>BxB ∈ R (mod m) is equivalent to γ>AxA + r1α+ r2β ∈ r0 +R (mod m).

On the other hand, for any solution (xA, α, β) of (2.31), we get that (α, β) ∈ Π̃ due to the constraints
in (2.31), and hence any solution xB of the relaxation of the B-problem satisfies γ>BxB ≡ r(α, β) (mod m).
From the same arguments as before, it follows that (xA, xB) is feasible for the original R-CCTUF problem.

46

2.5 Further details of our approach to R-CCTUF problems

To conclude the proof, observe that transforming the solution of the original problem to a solution of (2.31)
only requires the computation of α and β. For the other way round, we need to compute a feasible solution
to the relaxation of the B-problem, which can be done in strongly polynomial time using the algorithm of
Tardos [Tar86].

Proof of Theorem 2.18. Because π is a linear pattern by assumption, we can apply Theorem 2.62 with π̃ = π,
and Theorem 2.18 immediately follows.

More properties of patterns and a proof of Lemma 2.21

After having studied linear patterns and sub-patterns so far in this section, we now focus on non-linear
patterns π, i.e., patterns that have at least one pair (α, β) with |π(α, β)| ≥ 2 in their domain. The first lemma
below shows how the property of having |π(α, β)| ≥ 2 propagates over the domain of a pattern, again using
our averaging lemma, Lemma 2.57.

With the ultimate goal of this subsection being to prove Lemma 2.21, we first show Lemma 2.64, which
showcases one important and repeatedly used situation in which Lemma 2.21 holds. We remark at this
point that the requirement |R| ≥ m − 2 stated in Lemma 2.21 is only due to Lemma 2.64. Hence, future
attempts of overcoming this barrier using the ideas presented here will have to exploit setups beyond the
one in Lemma 2.64. In contrast, the assumption in Lemma 2.21 of m being a prime number is exploited in
several places.

Also, we remark that in this part, we aim at providing tools for analyzing (narrowed) patterns in a slightly
more general setup than what we actually need. More precisely, in our concrete case it would be enough to
analyze narrowed patterns that are contained in a rectangular box of scalar product pairs (α, β) of dimensions
3× 3 (this follows by Lemma 2.16, for example, and our assumption |R| ≥ m− 2). Still, we aim for the
slightly more general presentation of our methods, which may be useful in potential future work on these
topics, in particular when dropping the assumption |R| ≥ m− 2.

We start by observing that Lemma 2.21 trivially holds in the case where the pattern π is linear, as we
can then choose π̃ = π. In case of a non-linear pattern, we know that there is at least one pair (α, β) of
scalar products in the domain of the pattern such that |π(α, β)| ≥ 2. If there exists a solution for such scalar
products (α, β), item (ii) of Lemma 2.21 applies, so having many (α, β) with |π(α, β)| ≥ 2 is desirable.
Luckily, the subsequent lemma proves that such (α, β) cannot appear in a very isolated way.

Lemma 2.63. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1}, let (α, β) ∈ Πnarrowed and d ∈ D
such that (α, β) + d, (α, β) + 2d ∈ Πnarrowed. If |π(α, β)| ≥ 2, then |π((α, β) + d)| ≥ 2, as well.

Proof. Let x1 and y1 be feasible solutions of the relaxation of the underlying problem for scalar products
(α, β) with different residues, i.e., γ>Bx

1
B 6≡ γ>By1

B (mod m), and let x2 be any solution of the relaxation of
the problem for scalar products (α, β) + 2d.

Applying the averaging lemma (Lemma 2.57) to the solutions x1 and x2, and to the solutions y1 and x2, we
obtain solutions x3, x4 and solutions y3, y4, respectively, such that x1 +x2 = x3 +x4 and y1 +x2 = y3 +y4.
Moreover, the inequalities (2.23) in Lemma 2.57 state that all of x3, x4, y3, and y4 are solutions for the
scalar products (α, β) +d. Consequently, {(γ>Bx3

B mod m), (γ>Bx
4
B mod m), (γ>By

3
B mod m), (γ>By

4
B mod

m)} ⊆ π((α, β) + d). To get that |π((α, β) + d)| ≥ 2, note that these residues satisfy

γ>Bx
1
B + γ>Bx

2
B ≡ γ>Bx3

B + γ>Bx
4
B (mod m) , and γ>By

1
B + γ>Bx

2
B ≡ γ>By3

B + γ>By
4
B (mod m) ,

and hence, because γ>Bx
1
B 6≡ γ>By

1
B , at least two of the residues among (γ>Bx

3
B mod m), (γ>Bx

4
B mod m),

(γ>By
3
B mod m), and (γ>By

4
B mod m) must be distinct, which proves the lemma.

Even non-linear patterns π might have several (α, β) in their support that satisfy |π(α, β)| = 1. In
Lemma 2.21, such squares may be covered by a linear sub-pattern, but it turns out that in general, there is no
sub-pattern covering all pairs (α, β) with |π(α, β)| = 1. The following lemma describes a configuration that
allows for dealing with such pairs in a different way.

47

2 Congruency-constrained TU problems beyond the bimodular case

Lemma 2.64. Consider an R-CCTUF problem of the form given in (2.1) with prime modulus m and
|R| ≥ m− 2. Let π : Πnarrowed → 2{0,...,m−1} be an associated narrowed pattern, and let (α, β) ∈ Z2 and
d ∈ D with

(α, β), (α, β) + d, (α, β) + 2d ∈ Πnarrowed , |π(α, β)| = 1 , and |π((α, β) + d)| ≥ 2 .

If the problem has a solution with scalar products (α, β), one of the following holds:

(i) (α, β) satisfies case (i) of Lemma 2.21.
(ii) There is a solution with scalar products (α, β) + d, i.e., (α, β) + d satisfies case (ii) of Lemma 2.21.

Proof. Assume that (α, β) does not satisfy case (i) of Lemma 2.21, i.e. it is not true that for any solution
xA of the A-problem for scalar products (α, β), there exists a solution xB of the B-problem such that
(xA, xB) is feasible for the original problem. Recall that given a feasible solution xA of the relaxation of the
A-problem and a feasible solution xB of the relaxation of the B-problem for the same scalar products (α, β),
the combined solution (xA, xB) is feasible for the original problem if and only if it satisfies the congruency
constraint γ>AxA + γ>BxB ∈ R (mod m). As |π(α, β)| = 1 by assumption, r = (γ>BxB mod m) is the
same for all feasible solutions xB of the relaxation of the B-problem. Consequently, the only reason why a
combined solution (xA, xB) can be infeasible is that γ>AxA 6∈ R− r (mod m). On the other hand, because
by assumption, the problem has a feasible solution with scalar products (α, β), there must also be another
solution x′A with γ>Ax

′
A ∈ R− r (mod m).

Define πA : Πnarrowed → 2{0,1,...,m−1} such that πA(α′, β′) denotes, for every (α′, β′) ∈ Πnarrowed, the
set of residues γ>AxA that can be achieved by solutions of the relaxation of the A-problem with scalar
products (α′, β′). Hence, πA is defined identically to π, with the only difference that πA captures attainable
residues in the A-problem instead of the B-problem. Hence, by symmetry between the A-problem and
B-problem, properties holding for π and the B-problem also hold for πA and the A-problem. In particular,
the previous argument showed that |πA(α, β)| ≥ 2, and by definition of Πnarrowed, we know that the relaxation
of the A-problem is feasible for all (α′, β′) ∈ Πnarrowed. Thus, applying Lemma 2.63 to πA, we obtain that
|πA((α, β) + d)| ≥ 2, as well.

The residues that a solution (xA, xB) of the relaxation of the original problem can achieve for scalar
product (α, β) +d are given by the set πA((α, β) +d) +π((α, β) +d). By the Cauchy-Davenport Inequality
(Lemma 2.20), which we can apply as m is a prime number by assumption, we have

|πA((α, β) + d) + π((α, β) + d)| ≥ min{m, |πA((α, β) + d)|+ |π((α, β) + d)| − 1} ≥ min{m, 3} .

As the set R of target residues satisfies |R| ≥ m− 2, we conclude that at least one of the achievable residues
is a target residue, and hence there exists a solution of the problem with scalar products (α, β) + d.

To prove Lemma 2.21, we distinguish two cases based on whether the interior of the pattern domain is
empty or not, where interior is defined as follows.

Definition 2.65. For a set Π ⊆ Zn of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(2.32)

with `i, ui ∈ Z for i ∈ {0, 1, 2}, we say that (α, β) ∈ Π is in the interior of Π if none of the constraints
in (2.32) are tight for (α, β). Else, we say that (α, β) is on the boundary of Π.

In fact, for non-linear patterns π whose support has non-empty interior, we show that any pair (α, β) with
|π(α, β)| = 1 is part of a configuration of the type described by Lemma 2.64, leading to the following.

Lemma 2.66. Consider a non-linear narrowed pattern π for a feasible R-CCTUF problem as given in (2.1)
with prime modulus m and |R| ≥ m − 2. If the domain of π has non-empty interior, then (i) or (ii) in
Lemma 2.21 holds.

48

2.5 Further details of our approach to R-CCTUF problems

To prove this lemma, we study the structure of patterns more closely. We start with an observation, where
again, D := {±(1

0),±(0
1),±

(
1
−1

)
} denotes the set of all potential edge directions of the convex hull of a

pattern domain.

Observation 2.67. Let Π ⊆ Zn be of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(2.33)

with `i, ui ∈ Z for i ∈ {0, 1, 2}. Then (α, β) ∈ Π is in the interior of Π if and only if (α, β) + d ∈ Π for all
d ∈ D.

Lemma 2.68. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} such that there exists (α1, β1) ∈
Πnarrowed with |π(α1, β1)| ≥ 2. Then, for every (α2, β2) ∈ Πnarrowed \ {(α1, β1)}, there exists d ∈ D such
that (α2, β2) + d ∈ D(α1,β1),(α2,β2) and |π((α2, β2) + d)| ≥ 2.

Proof. For any two pairs (α, β), (α′, β′) ∈ Z2, denote

∆((α, β), (α′, β′)) := max{|α− α′|, |β − β′|, |(α+ β)− (α′ + β′)|} .

We prove that Lemma 2.68 holds by induction on ∆ = ∆((α1, β1), (α2, β2)). For the base case, note that
∆ = 1 implies that there exists d ∈ D such that (α1, β1) = (α2, β2) + d, so there is nothing to show. Thus,
assume that Lemma 2.68 holds if ∆ < t for some t ∈ Z≥2, and consider a situation with ∆ = t. Let x1

and y1 be two solutions for scalar products (α1, β1) with γ>Bx
1
B 6≡ γ>By1

B (mod m). These solutions exist
because by assumption, |π(α1, β1)| ≥ 2. Additionally, let x2 be a solution for scalar products (α2, β2).
Applying the averaging lemma (Lemma 2.57) to x1 and x2, and to y1 and x2, we obtain solutions x3, x4 and
y3, y4, respectively, where x1 + x2 = x3 + x4 and y1 + x2 = y3 + y4. Observe that the inequalities (2.23)
leave only one option for each of (α3, β3) and (α4, β4), and both of these are within D(α1,β1),(α2,β2). In
particular, they satisfy

∆((α3, β3), (α2, β2)) ≤ dt/2e and ∆((α4, β4), (α2, β2)) ≤ dt/2e .

We claim that either |π(α3, β3)| ≥ 2 or |π(α4, β4)| ≥ 2, which allows us to apply the inductive assumption,
thus finishing the proof.

To show the claim, assume for the sake of deriving a contradiction that |π(α3, β3)| = |π(α4, β4)| = 1.
Without loss of generality, let x3 and y3 be solutions for (α3, β3), while x4 and y4 are solutions for (α4, β4).
Then, by the assumption, γ>Bx

3
B ≡ γ>By3

B (mod m), and γ>Bx
4
B ≡ γ>By4

B (mod m). Thus, we also obtain

γ>Bx
1
B + γ>Bx

2
B = γ>Bx

3
B + γ>Bx

4
B ≡ γ>By3

B + γ>By
4
B = γ>By

1
B + γ>Bx

2
B (mod m) ,

but this contradicts the choice of x1 and y1 such that γ>Bx
1
B 6≡ γ>By1

B (mod m).

Lemma 2.69. Consider a non-linear narrowed pattern π : Πnarrowed → 2{0,...,m−1}. Then, for every (α, β)
in the interior of Πnarrowed, we have |π(α, β)| ≥ 2.

Proof. Because the pattern π is non-linear, there exists (α1, β1) ∈ Πnarrowed such that |π(α1, β1)| ≥ 2.
Consider any (α, β) in the interior of Πnarrowed. Then by Lemma 2.68, there exists d ∈ D such that
(α, β) + d ∈ Πnarrowed and |π((α, β) + d)| ≥ 2. Because (α, β) is in the interior of Πnarrowed, we also have
that (α+β)−d ∈ Πnarrowed. Consequently, applying Lemma 2.63, we obtain that |π(α, β)| ≥ 2, as well.

Having the above at hand, we are now ready to prove Lemma 2.66.

49

2 Congruency-constrained TU problems beyond the bimodular case

Proof of Lemma 2.66. If the problem has a solution for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2,
then case (ii) of Lemma 2.21 holds. Thus, assume that this is not the case, i.e., the problem only has solutions
for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| = 1.

By Lemma 2.69, there is a scalar product (α′, β′) in the interior of Πnarrowed with |π(α′, β′)| ≥ 2. Applying
Lemma 2.68 to (α′, β′) and (α, β), we obtain that there exists d ∈ D such that (α, β) + d ∈ D(α,β),(α′,β′) ⊆
Πnarrowed and |π((α, β) + d)| ≥ 2. Note that because (α′, β′) is in the interior of Πnarrowed, we have
(α′, β′) + d ∈ Πnarrowed, and thus also D(α,β),(α′,β′)+d ⊆ Πnarrowed. As (α, β) + d ∈ D(α,β),(α′,β′), it is also
true that (α, β) + 2d ∈ D(α,β),(α′,β′)+d, so we conclude that (α, β) + 2d ∈ Πnarrowed.

Observe that (α, β) and d thus satisfy the assumptions of Lemma 2.64. Because we assumed that there are
no scalar product pairs satisfying case (ii) of Lemma 2.21, Lemma 2.64 implies that here, (α, β) satisfies
case (i) of Lemma 2.21.

To prove Lemma 2.21, it remains to deal with patterns whose domain has empty interior, which is covered
by the statement below.

Lemma 2.70. Consider a non-linear narrowed pattern π for a feasible R-CCTUF problem as given in (2.1)
with prime modulus m and |R| ≥ m− 2. If the domain of π has empty interior, Lemma 2.21 holds.

α

β

a a+ 2

b

b+ 2

α

β

a a+ 2

b

b+ 2

Figure 2.2: Shapes Π
(a,b)
1 (left) and Π

(a,b)
2 (right).

Before proving Lemma 2.70, we first observe structural properties of pattern domains with an empty
interior. The possible shapes of such domains is very restricted. In particular, the subsequent lemma shows
that they are either flat, or contained in small shapes Π

(a,b)
0 and Π

(a,b)
1 for a, b ∈ Z given by

Π
(a,b)
1 :=

(α, β) ∈ Z2 :
a ≤ α ≤ a+ 2
b ≤ β ≤ b+ 2

a+ b ≤ α+ β ≤ a+ b+ 2

and Π

(a,b)
2 :=

(α, β) ∈ Z2 :
a ≤ α ≤ a+ 2
b ≤ β ≤ b+ 2

a+ b+ 2 ≤ α+ β ≤ a+ b+ 4

 ,

as depicted in Fig. 2.2.
In what follows, we define D⊥ := {±(1

0),±(0
1),±(1

1)}, which is a set of vectors orthogonal to the
potential edge directions D of the convex hull of a pattern support (see Lemma 2.55).

Lemma 2.71. Let Π ⊆ Zn be of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(2.34)

with `i, ui ∈ Z for i ∈ {0, 1, 2}, and assume that Π has empty interior. Then at least one of the following
holds:

(i) A direction in D⊥ is a flat direction of width at most 1 for Π.

50

2.5 Further details of our approach to R-CCTUF problems

(ii) There are a, b ∈ Z and i ∈ {1, 2} such that Π ⊆ Π
(a,b)
i .

Proof. Assume that item (i) does not hold, i.e., the three directions (1
0), (0

1), and (1
1) are all of width at

least 2, and let (α0, β0) ∈ arg max(α,β)∈Π (α− β). Starting from a general Π of the form in (2.34), there are
three cases to distinguish:

Case 1: (α0, β0) = (u1, `2) and the edge directions at (α0, β0) are d1 = (0
1) and d2 =

(−1
0

)
.

This implies that (α0, β0) + d1, (α0, β0) + d2 ∈ Π, hence we must have `0 ≤ α0 + β0 − 1 and
u0 ≥ α0 + β0 + 1. Also note that because (1

0), (0
1) are directions of width at least 2, we must also

have `1 ≤ α0 − 2 and u2 ≥ β0 + 2. But this implies that (α0 − 1, β0 + 1) is in the interior of Π,
contradicting the assumption.

Case 2: (α0, β0) = (u1, `0 − u1) and the edge directions at (α0, β0) are d1 = (0
1) and d2 =

(−1
1

)
.

Because of the width 2 assumption, we must have `1 ≤ u1−2 = α0−2 and u0 ≥ `0 +2 = α0 +β0 +2.
Also, we must have u2 ≥ β0 + 2. If u2 = β0 + 2, we obtain Π ⊆ Π

(α0−2,β0)
2 ; if u2 > β0 + 2, then

(α0 − 1, β0 + 2) is in the interior of Π, which is a contradiction.

Case 3: (α0, β0) = (u0 − `2, `2) and the edge directions at (α0, β0) are d1 =
(−1

0

)
and d2 =

(−1
1

)
.

Because of the width 2 assumption, we must have u2 ≥ `2 +2 = β0 +2 and `0 ≤ u0−2 = α0 +β0−2.
Also, we must have `1 ≤ α0 − 2. If `1 = α0 − 2, we obtain Π ⊆ Π

(α0−2,β0)
1 ; if `1 < α0 − 2, then

(α0 − 2, β0 + 1) is in the interior of Π, which is a contradiction.

Proof of Lemma 2.70. When dealing with patterns and showing that Lemma 2.21 holds, observe the follow-
ing: If there exists a solution for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, then item (ii) of
Lemma 2.21 applies, so we can assume from now on that any scalar products (α, β) ∈ Πnarrowed for which
there is a solution satisfy |π(α, β)| = 1. To this end, we exploit two options: The first one is that such
squares are contained in configurations of the type described by Lemma 2.64; the second one is to find a
linear sub-pattern that has the corresponding (α, β) in its domain and thus covers potential solutions for these
scalar products. We distinguish three cases based on the shape of the narrowed pattern domain Πnarrowed,
which cover all the options by Lemma 2.71:

Case 1: There is a direction of width 0 for Πnarrowed in D⊥, but Πnarrowed 6⊆ Π
(a,b)
i for any a, b ∈ Z and

i ∈ {1, 2}.

Case 2: There is no direction of width 0 but one of width 1 for Πnarrowed in D⊥, and Πnarrowed 6⊆ Π
(a,b)
i for

any a, b ∈ Z and i ∈ {1, 2}.

Case 3: There are a, b ∈ Z and i ∈ {1, 2} such that Πnarrowed ⊆ Π
(a,b)
i .

In case 1, observe that Πnarrowed is bounded, hence there exist (α0, β0) ∈ Πnarrowed, d ∈ D and t ∈ Z≥0

such that
Πnarrowed = {(α0, β0) + id : i ∈ {0, . . . , t}} ,

and because Πnarrowed 6⊆ Π
(a,b)
i for any a, b, and i, we must have t ≥ 3. Because the pattern is non-linear,

there exists (α1, β1) ∈ Πnarrowed with |π(α1, β1)| ≥ 2. We claim that |π((α0, β0) + id)| ≥ 2 for all
i ∈ {1, . . . , t− 1}.

To see the claim, we first show that |π((α0, β0) + d)| ≥ 2. If (α0, β0) 6= (α1, β1), we may apply
Lemma 2.68 to (α0, β0) and (α1, β1) to obtain that |π((α0, β0) + d)| ≥ 2. If, on the other hand, (α0, β0) =
(α1, β1), then apply Lemma 2.68 to (α0, β0) + 2d and (α1, β1), which also gives |π((α0, β0) + d)| ≥ 2.
Finally, applying Lemma 2.68 once again to (α0, β0) + (i + 1)d and (α0, β0) + d for i ∈ {2, . . . , t − 1},
we get that |π(α0, β0) + id)| ≥ 2. Thus, the only potential scalar product pairs with |π(α, β)| = 1 are
(α, β) ∈ {(α0, β0), (α0, β0) + td}. These (α, β) are part of a configuration as described by Lemma 2.64,
hence we get that if there is a solution for such (α, β), then either item (i) or (ii) of Lemma 2.21 holds.

51

2 Congruency-constrained TU problems beyond the bimodular case

In case 2, we note that the condition on a flat direction of width 1 implies that there exists (α, β) ∈ Πnarrowed
and two directions d1, d2 ∈ D with d1 6= d2 and d1 6= −d2 such that

Πnarrowed ⊆ {(α0, β0) + id1 + εd2 : i ∈ Z, ε ∈ {0, 1}} .

Define Π0 := Πnarrowed ∩ {(α0, β0) + id1 : i ∈ Z}, and Π1 := Πnarrowed ∩ {(α0, β0) + id1 + d2 : i ∈ Z}.
If |Π0| < 3 or |Π1| < 3, then Πnarrowed ⊆ Π

(a,b)
i for some a, b ∈ Z and i ∈ {0, 1}, which we excluded in

this case. Thus, |Π0| ≥ 3 and |Π1| ≥ 3. Observe that because the pattern π is non-linear, for at least one
ε ∈ {0, 1}, there exist (α, β) ∈ Πε with |π(α, β)| ≥ 2, and hence we may apply the analysis from case 1 to
such Πε to see that if there is a solution for scalar products in Πε, then one of items (i) or (ii) of Lemma 2.21
applies. If not both Πε fall into the previous case, then there is one remaining, say Πε′ , such that for all
(α, β) ∈ Πε′ , |π(α, β)| = 1. Then π̃ := π|Πε′ is a linear sub-pattern of π, hence if there is a solution covered
by π̃, then item (iii) of Lemma 2.21 applies. This completes the analysis of case 2.

Finally, we deal with case 3 on a case-by-case basis, by going through potential narrowed pattern domain
shapes that are contained in sets of the form Π

(a,b)
0 or Π

(a,b)
1 for some (a, b) ∈ Z2, presented here by increasing

size of |Πnarrowed|.
• |Πnarrowed| ≤ 3: If Πnarrowed = {(α0, β0) + id : i ∈ {0, 1, 2}} for some (α0, β0) ∈ Z2 and d ∈ D, then

the arguments from case 1 apply. Otherwise, restricting π to the subset of all (α, β) ∈ Πnarrowed with
|π(α, β)| = 1 gives a sub-pattern π̃ for which Lemma 2.21 follows immediately.

• |Πnarrowed| = 4: Because we require Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}, the only

possible shapes of Πnarrowed are the ones given in Fig. 2.3.

x1

x3 x4

x2

α

β

x3 x1

x2 x4

α

β

x1 x3

x4 x2

α

β

Figure 2.3: Narrowed pattern domains if |Πnarrowed| = 4 and Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and

i ∈ {0, 1}.

Now in any of these three cases, let x1 and x2 be solutions of the relaxation of the R-CCTUF problem
for scalar products (α, β) located in the pattern Πnarrowed as indicated in Fig. 2.3. Applying the averag-
ing lemma (Lemma 2.57) to x1 and x2, we obtain solutions x3 and x4, and by the inequalities (2.23)
in Lemma 2.57 and the property that x1 + x2 = x3 + x4, we may assume that x3 and x4 are solutions
for scalar products located in the pattern Πnarrowed as indicated in Fig. 2.3, as well.
Now observe that the residues γ>Bx

i
B satisfy γ>Bx

1
B + γ>Bx

2
B = γ>Bx

3
B + γ>Bx

4
B , and hence the sub-

pattern π̃ that maps (α, β) ∈ Πnarrowed to the residue γ>Bx
i
B , where xi is the solution for (α, β), is a

linear sub-pattern. More importantly, it is a linear sub-pattern that covers all (α, β) ∈ Πnarrowed with
|π(α, β)| = 1, and hence Lemma 2.21 follows.

• |Πnarrowed| = 5: Again, requiring Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}, we can

immediately enumerate the possible shapes of Πnarrowed, giving the list in Fig. 2.4.
Observe that each of the six pattern domains in Fig. 2.4 contains a segment of the form {(α0, β0) +
id : i ∈ {0, 1, 2}} for some (α0, β0) ∈ Πnarrowed and d ∈ D, namely the segments marked in gray in
Fig. 2.4. If for some (α, β) on such a segment, we have |π(α, β)| ≥ 2, then the arguments of case 1
apply, and they show that if there is a solution with scalar products on the segment, then either item (i)
or (ii) of Lemma 2.21 applies. The remaining scalar products (i.e., those not covered by the segment)
can then be treated as in the case |Πnarrowed| ≤ 3.

52

2.5 Further details of our approach to R-CCTUF problems

x y′

y

x′

α

β

x′ y′

y x

α

β

x′

y

x y′

α

β

x′

y

y′ x

α

β

x y

y′ x′

α

β

x′ y

x

y′

α

β

Figure 2.4: Narrowed pattern domains if |Πnarrowed| = 5 and Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and

i ∈ {0, 1}.

Thus, let us assume that for all (α, β) that are marked gray in Fig. 2.4, |π(α, β)| = 1. This implies
that at least one of the other two (α, β) in the pattern (marked with x and y in Fig. 2.4) must satisfy
|π(α, β)| ≥ 2. In fact, we claim that in this case, both of the other two have that property. This is
enough to conclude because then, if there exist solutions for these scalar product pairs, item (ii) of
Lemma 2.21 applies. Hence, restricting π to the subset of all (α, β) ∈ Πnarrowed with |π(α, β)| = 1
(i.e., those in the segment) gives a sub-pattern π̃ for which Lemma 2.21 follows immediately.
To see the claim, we first assume that the pair (α, β) marked with an x in Fig. 2.4 satisfies |π(α, β)| ≥ 2.
Let the pair marked x′ be (α′, β′), and apply Lemma 2.68 to (α, β) and (α′, β′) to obtain that there
exists d′ ∈ D such that (α′, β′)+d′ ∈ Πnarrowed and |π((α′, β′)+d′)| ≥ 2. By assumption, (α′, β′)+d′

can thus not be within the gray segment, and in all cases, it is immediate to see that (α′, β′) + d must
correspond to the spot in the pattern marked with y in Fig. 2.4. The same argument works with the
roles of x and x′ interchanged with y and y′, so the claim follows.

• |Πnarrowed| = 6, i.e., Πnarrowed = Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {1, 2}. Note that in such

domains, every (α, β) is contained in a boundary segment of the form {(α0, β0) + id : i ∈ {0, 1, 2}}
for some (α0, β0) ∈ Πnarrowed and d ∈ D. As the pattern is non-linear, at least one of these segments
contains (α, β) such that |π(α, β)| ≥ 2. Hence, the arguments of case 1 apply again, and if there
is a solution with scalar products in that segment, then item (i) or (ii) of Lemma 2.21 applies. The
remaining three scalar products (i.e., those not covered by the segment) can then be treated as in the
case |Πnarrowed| = 3.

To finish the proof, observe that in every case where a linear sub-pattern π̃ was identified, this could be done
in strongly polynomial time in the size of the underlying R-CCTUF problem.

Proof of Lemma 2.21. If π is linear, we may choose π̃ = π, and item (iii) of Lemma 2.21 applies. For
non-linear π, by Lemma 2.66 we have that Lemma 2.21 holds if the domain of π has non-empty interior, and
by Lemma 2.70 it holds for domains with empty interior.

2.5.3 Proof of Theorem 2.22

We can (after potentially permuting rows and columns of the constraint matrix such that A and B change
their roles) assume that the matrix B has at most as many columns as A, i.e., p = min{nA, nB} = nB .

53

2 Congruency-constrained TU problems beyond the bimodular case

Furthermore, by Lemma 2.16, we can in strongly polynomial time determine `i, ui ∈ Z with ui−`i ≤ m−|R|
for i ∈ {0, 1, 2} such that if the R-CCTUF problem has a solution, then it has one with `0 ≤ α+ β ≤ u0,
`1 ≤ α ≤ u1, and `2 ≤ β ≤ u2. By Lemma 2.54, we can even choose these `i and ui for i ∈ {0, 1, 2} such
that the corresponding narrowed pattern π : Πnarrowed → 2{0,...,m−1} has domain

Πnarrowed =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

For each (α, β) ∈ Πnarrowed, we can now in strongly polynomial time compute the following:
• A solution xα,βA for the relaxation of the A-problem for scalar products (α, β).
• Exactly tα,β := min{|π(α, β)|,m − ` + 1} solutions xα,βB,i of the relaxation of the B-problem with

pairwise different residues rα,βi := γ>Bx
α,β
B,i for i ∈ [tα,β].

Note that computing the solutions xα,βA boils down to obtaining optimal vertex solutions to linear programs
with a constraint matrix with bounded entries, which we can do in strongly polynomial time using the
framework of Tardos [Tar86]. For fixed (α, β), computing the solutions xα,βB,i can be done by solving
m− `+ 1 many B-problems with scalar products (α, β), i.e., by recursively calling our procedure, where
we start with the full set RB,1 = {0, . . . ,m− 1} of feasible target residues to get a solution xα,βB,1, and then
iterate using RB,i+1 = RB,i \ {rα,βi }, until we have m− `+ 1 many different residues, or we arrive at an
infeasible problem. In the latter case, we computed π(α, β) = {rα,βi : i = 1, . . . , tα,β}, while in the first
case, we just obtained a subset of π(α, β). Also note that each of the solutions xα,βB,i is obtained from an
R-CCTUF problem with p variables, modulus m, and at most ` many target residues, and we solved at most
m− `+ 1 ≤ 3 of them for each (α, β) ∈ Πnarrowed. As |Πnarrowed| < (m− `+ 1)2, this procedure needed
less than 3(m− `+ 1)2 many recursive calls in total, in accordance with the claim in Theorem 2.22.

Now invoke Lemma 2.21. We can directly check whether case (i) applies by going through all (α, β) ∈
Πnarrowed with |π(α, β)| = 1. If case (i) applies for some (α, β) ∈ Πnarrowed, the combination (xα,βA , xα,βB,1)
must be a solution to the R-CCTUF problem.

If case (ii) of Lemma 2.21 applies, we can find a solution as follows: For (α, β) ∈ Πnarrowed with
|π(α, β)| ≥ m− `+ 1, we can in fact immediately find a solution because by construction, all combinations
(xα,βA , xα,βB,i) for i = 1, . . . ,m− `+ 1 are feasible for the relaxation of the R-CCTUF problem, and then have
pairwise different residues γ>Ax

α,β
A + γ>Bx

α,β
B,i . But in this case, one of them must have a residue in the set R

that has size `, thus giving a feasible solution. If on the other hand 1 < |π(α, β)| ≤ m− `, we reduce the
problem to the modified A-problem

AxA ≤ bA − αe
h>xA = β
γ>AxA ∈ R′ (mod m) ,

where R′ = R− π(α, β). This problem has a solution if and only if the original R-CCTUF problem has one:
Note that any solution xA of its relaxation can be combined with any solution xB of the relaxation of the
B-problem to obtain a solution (xA, xB) that is feasible for the relaxation of the original R-CCTUF problem.
Moreover, the residues in R′ are precisely those that allow us to obtain a combined solution (xA, xB) that
also satisfies the original congruency constraint. Since m is a prime number and |π(α, β)| > 1, Lemma 2.20
guarantees that |R′| ≥ |R| + 1 = ` + 1. To sum up, if case (ii) of Lemma 2.21 applies, we either find a
feasible solution in strongly polynomial time, or we construct at most |Πnarrowed| ≤ (m− `+ 1)2 many new
R-CCTUF problems with n− p variables, modulus m, and at least `+ 1 target residues such that at least one
of them has a feasible solution that, as seen immediately from the above discussion, can be transformed to a
solution of the initial problem in strongly polynomial time.

If the above strategy to obtain a solution in case (ii) of Lemma 2.21 fails, we know that case (iii) of
Lemma 2.21 applies. In this case, we know that the problem has a solution that is covered by the linear
sub-pattern π̃. Applying Theorem 2.62, we reduce the problem to an R-CCTUF problem with n − p + 2
variables, modulus m, and ` target residues, with the additional property that the inequality system has an

54

2.A Detecting unboundedness of CCTU problems

equality constraint. This equality constraint allows for applying Theorem 2.19 to eliminate one variable
and obtain an equivalent R-CCTUF problem with n − p + 1 variables, modulus m and ` target residues.
It remains to observe that a solution of this problem can be immediately transformed back to a solution of
the intermediate problem, and that solution can, by Theorem 2.62, be transformed back to a solution of the
original problem in strongly polynomial time.

Altogether, after solving less than 3(m− `+ 1)2 many R-CCTUF problems with at most p variables and
further strongly polynomial time operations, we can either obtain a feasible solution, or construct a family F
of problems that have the properties claimed by Theorem 2.22.

2.5.4 Proof of Theorem 2.19

By performing a pivoting operation (see Definition 2.13) on the element α, we obtain a new TU matrix which
has A− αaia>2 as a submatrix. Hence the latter is also TU. Moreover, the two systems are equivalent since

Ax + a1y ≤ b
a>2 x + αy = β

⇐⇒ Ax+ a1α(β − a>2 x) ≤ b
y = α(β − a>2 x)

⇐⇒ (A− αa1a
>
2)x ≤ b− αβa1

y = α(β − a>2 x)
,

where we use that α ∈ {−1, 1} since the matrix is TU and α 6= 0. This completes the proof.

2.5.5 Proof of Theorem 2.23

Consider an R-CCTUF problem

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn ,

where T falls into case (iv) of Theorem 2.14, and assume without loss of generality that the desired pivoted
matrix arises from T by pivoting on the element in the first row and column.

Observe that due to Lemma 2.25, we can determine u ∈ Z such that the initial R-CCTUF problem is
feasible if and only if

Tx ≤ b, y1 ≤ u, γ>x ∈ R (mod m), x ∈ Zn (2.35)

is. Let T :=
(
ε p>

q C

)
, and let Q ∈ Zn×n be the unimodular matrix that corresponds to the column operations

such that the first row of TQ is equal to the vector (1, 0, . . . , 0). Then, if e1 denotes the first n-dimensional
unit vector, (

T
e>1

)
Q =

ε p>

q C
1 0

Q =

 1 0
εq C − εqp>
ε −εp>

 .

Thus, substituting x = Qy and observing that x ∈ Zn if and only if y ∈ Zn, we can rewrite the system
in (2.35) as 1 0

εq C − εqp>
ε −εp>

 y ≤
(
b
u

)
, (γ>Q)y ∈ R (mod m), y ∈ Zn , (2.36)

which is of the desired form.

Appendix 2.A Detecting unboundedness of CCTU problems

Lemma 2.72. A CCTU problem is unbounded if and only if it is feasible and its relaxation is unbounded.
Moreover, given a feasible solution x0 ∈ Zn to an unbounded CCTU problem min{c>x : Tx ≤ b, γ>x ≡
r (mod m), x ∈ Zn}, one can efficiently determine a vector v ∈ Zn such that x0 + k · v is feasible for any
k ∈ Z≥0 and c>v < 0.

55

2 Congruency-constrained TU problems beyond the bimodular case

Proof. If a CCTU problem is unbounded, then it obviously has a feasible solution and its relaxation is
unbounded. To show the other direction, consider a feasible CCTU problem

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn

}
whose relaxation is unbounded. Thus, there exists a point x0 ∈ Zn that is feasible for the problem, and
a direction r ∈ Zn with c>r < 0 such that for any point x that is feasible for the relaxation, x + r is
feasible for the relaxation, as well. This implies that xk = x0 + mkr satisfies Txk ≤ b, xk ∈ Zn, and
γ>xk ≡ γ>x0 ≡ r (mod m) for all k ∈ Z>0, and thus every such xk is feasible for the CCTU problem. As
c>xk = c>x0 +mkc>r → −∞ for k →∞, we conclude that the CCTU problem is unbounded.

Moreover, note that if the relaxation is unbounded, then one can obtain in polynomial time a vector r ∈ Zn

as described above, i.e., with c>r < 0 and Tr ≤ 0. Hence, the vector v := m · r can be computed efficiently
and has the properties claimed by the lemma.

We remark that Lemma 2.72 extends to R-CCTUF problems and their optimization counterparts, as well.

56

Chapter 3

A new contraction technique with applications to
congruency-constrained cuts

3.1 Introduction

Cuts in undirected graphs are a basic structure in Combinatorial Optimization with a multitude of applications.
The global minimum cut problem, the minimum s-t cut problem, and the minimum odd cut problem are
among the best known efficiently solvable minimum cut variants, and have been the cradle of many exciting
algorithmic techniques. We study a generalization of these problems that we call congruency-constrained
minimum cut (CCMC), where a congruency constraint on the vertices in the cut is imposed, as described in
the box below.1

Congruency-Constrained Minimum Cut (CCMC): Let G = (V,E) be an undirected graph with
edge weights w : E → R>0 and let γ : V → Z>0. Let m ∈ Z>0 and r ∈ Z>0. The task is to find a
minimizer of

min

{
w(δ(C))

∣∣∣∣∣ ∅ (C (V,
∑
v∈C

γ(v) ≡ r (mod m)

}
.

We call m the modulus of the problem, and we will typically consider m to be constant. Moreover,
allowing general γ-values—instead of setting γ(v) = 1 for all v ∈ V , i.e., requiring that |C| ≡ r (mod m)—
is merely for convenience. Indeed, the case of general γ-values can be reduced to the unit case by replacing
each vertex v by a clique of (γ(v) mod m)-many vertices with large edge values if γ(v) 6≡ 0 (mod m), and
a clique of size m if γ(v) ≡ 0 (mod m).2

Apart from generalizing well-known cut problems, we are interested in the study of CCMC problems due to
a link to an intriguing open question in Integer Programming, namely whether integer linear programs (ILPs)
defined by an integer constraint matrix with bounded subdeterminants can be solved efficiently. Recently
it was shown in [AWZ17] that ILPs of the form min{c>x | Ax 6 b, x ∈ Zn} can be solved efficiently if
A ∈ Zm×n is bimodular, i.e., A has full column-rank and the determinant of every n× n submatrix of A is
in {−2,−1, 0, 1, 2}. This result implies that if A is totally bimodular, i.e., all subdeterminants of A are in
{−2,−1, 0, 1, 2}, then the corresponding ILP can be solved in polynomial time even without the requirement
of A having full column rank (see [AWZ17] for details). This extends the well-known fact that ILPs with a
totally unimodular constraint matrix can be solved efficiently; here, the absolute value of subdeterminants
is bounded by 1. Only very limited techniques are known for attacking the question whether ILPs remain

1The minimum odd cut problem is captured by CCMC by choosing m = 2, r = 1, and γ(v) = 1 for all v ∈ V . Global
minimum cuts correspond to m = 1, r arbitrary, and γ(v) = 0 for all v ∈ V , and s-t cuts can be modeled as minimum {s, t}-odd
cuts, i.e., m = 2, r = 1, γ(s) = γ(t) = 1, and γ(v) = 0 for all v ∈ V \ {s, t}.

2We denote by (γ(v) mod m) the smallest non-negative integer congruent to γ(v) modulo m. Reducing modulo m is crucial
to obtain a blow-up bounded by m, which, as mentioned, we will typically assume to be constant.

57

3 A new contraction technique with applications to congruency-constrained cuts

efficiently solvable in the ∆-modular case for some constant ∆ > 2, i.e., rank(A) = n and any n × n
subdeterminant of A is in {−∆,−∆ + 1, . . . ,∆}. Interestingly, to approach the bimodular case, classical
combinatorial optimization problems with congruency constraints play a crucial role, and the problem can
be reduced to certain types of congruency-constrained cut and flow problems (see [AWZ17]). In particular,
CCMC with modulusm can be reduced tom-modular ILPs.3 Hence, if one believes that ∆-modular ILPs can
be solved efficiently for ∆ = O(1), then CCMC should admit an efficient algorithm. Conversely, despite the
fact that, for ∆ ≥ 3, further gaps have to be overcome to reduce ∆-modular ILPs to congruency-constrained
cut and flow problems, the results in [AWZ17] give hope that congruency-constrained cuts may be a useful
building block for attacking ∆-modular ILPs, besides merely being a special case thereof.

Unfortunately, not much is known in terms of techniques to deal with congruency constraints in Combina-
torial Optimization beyond parity constraints (m = 2). These constraints introduce an algebraic component
to the underlying problem, which is a main additional hurdle to overcome. The results presented in Chapter 2
provide a first step towards ∆ = 3 by showing (among others) that for ILPs with totally unimodular con-
straint matrices and a congruency constraint with modulus 3, we can efficiently decide feasibility. These
results are obtained through a significant extension of the approach in [AWZ17] in combination with new
structural insights, and they further nurture the belief that general ∆-modular ILPs should be polynomial-time
solvable for constant ∆. Closer to the congruency-constrained minimum cut setup, some progress has also
been achieved for moduli m that are constant prime powers: it was shown in [NSZ19] that submodular
function minimization under congruency constraints with such moduli can be solved efficiently. As the cut
function is submodular, this implies that CCMC can be solved efficiently for m being a constant prime power.
However, the techniques in [NSZ19] do not extend to general constant moduli m, due to intrinsic additional
complications appearing when m has two different prime divisors.

The goal of this chapter is to show that contraction techniques, in the spirit of Karger’s algorithm for
global minimum cuts [Kar93; KS96], can be employed to approach CCMC. A naive way of using Karger for

C

· · ·

u

v1
v2 v3 vn

w
γ(u) = γ(w) = 4, ∀i ∈ [n] : γ(vi) = 3

w(e) = 1 w(e) = M

Figure 3.1: A CCMC instance with m = 6 and r = 1. Its optimal value is n+M −1, achieved by the highlighted
cut C.

CCMC faces several hurdles, which we exemplify through the CCMC instance in Fig. 3.1, parameterized by
an even number n and a weight M > 1.4 It consists of n paths of length 2 between two vertices u and w. An
optimal cut is highlighted in gray. Karger’s algorithm returns any global minimum cut in a graph G = (V,E)
with probability Ω(|V |−2), implying that there are at most O(|V |2) global minimum cuts. However, for

3If M is the incidence matrix of the digraph H = (V,A) obtained by bidirecting G, then

min

{∑
a∈A

waya

∣∣∣∣∣ Mx− y 6 0,
∑
v∈V γ(v)xv + zm = r, xs = 1, xt = 0,

x ∈ {0, 1}V , y ∈ {0, 1}A, z ∈ Z .

}
solves the congruency-constrained minimum s-t cut problem in G with edge weights w and congruency constraint γ(C) ≡
r (mod m), where the cut corresponds to the set C = {v ∈ V | xv = 1}. Moreover, the constraint matrix of the above ILP can be
seen to be m-modular. Analogously to how global min cut problems can be reduced to min s-t cut problems, every CCMC problem
can be reduced to solving linearly many problems of the above type.

4Even n ensures that S = {w, v1, v2, . . . , vn} is infeasible, i.e., γ(S) 6≡ 1 (mod 6).

58

3.1 Introduction

M = 1, the CCMC problem in Fig. 3.1 has exponentially many optimal solutions. Hence, we cannot hope
for an algorithm that returns any optimal solution with probability Ω(1/poly(|V |)). Moreover, if one of the
n many u-w paths gets contracted, then the problem turns infeasible. It is not clear how to fix this. Even
if we forbid contractions that make the instance infeasible, it is likely that in many of the u-w paths, one
would contract the edge of weight 1. It is not hard to verify that Karger-type contractions would with high
probability lead to a cut that is about twice as large as the minimum cut if M is chosen large (and this factor
of 2 can be boosted further).

To overcome these and further hurdles, substantial changes seem necessary, and we introduce new tech-
niques to employ contraction algorithms in our context. A key difference between our method and Karger’s
algorithm, as well as other contraction algorithms in a similar spirit (see a recent result of Chandrasekaran,
Xu, and Yu [CXY18] for a nice adaptation of Karger’s algorithm to the hypergraph k-cut problem), is that we
do not contract edges of the graph. Instead, we define a distribution over pairs of vertices to contract that
may not be connected by an edge. Moreover, we only look for contractions among certain vertices, namely
those v ∈ V fulfilling γ(v) 6≡ 0 (mod m). We show that splitting-off techniques from Graph Theory can be
leveraged to design an efficient procedure to sample from a distribution of vertex pairs to contract with strong
properties.

3.1.1 Our results

Our main result for CCMC via our new contraction technique is the following.

Theorem 3.1. CCMC with constant modulus m admits a PRAS.

Recall that a PRAS (polynomial time randomized approximation scheme) is an efficient procedure that,
for any fixed ε > 0, returns a (1 + ε)-approximate solution with high probability, by which we mean with
probability at least 1− 1/|V |. As the focus of this chapter is existence of the PRAS claimed by Theorem 3.1,
no efforts were made to optimize its running time. Nevertheless, let us mention that for ε < 1, we can

bound the running time of our PRAS by log
(
wmax
wmin

)
· |V |O

(
m logm

ε

)
· 2O(m2), where wmax and wmin are the

maximum and minimum edge weights occurring in the CCMC instance, respectively. A short discussion of
this bound is given at the end of Section 3.2.

Moreover, for a constant composite modulus m that is the product of only two primes, we obtain an exact
procedure.

Theorem 3.2. CCMC with a constant modulus that is the product of two primes admits an efficient random-
ized algorithm that w.h.p. returns an optimal solution.

This is in stark contrast to prior procedures, in particular for congruency-constrained submodular function
minimization [NSZ19], which employ techniques that face hard barriers for moduli beyond prime powers.

Finally, in a similar spirit to Karger’s algorithm for global minimum cuts, our contraction algorithm allows
us to derive structural results on near-minimum congruency-constrained cuts. Whereas Karger’s analysis
shows that there are only polynomially many cuts of value at most a constant factor higher than the minimum
cut, we cannot hope for results of this type: The example in Fig. 3.1 shows that CCMC problems can have
exponentially many optimal solutions. For prime moduli, we show that near-minimum CCMC cuts are
near-minimum cuts (without congruency constraint) in one of only a polynomial number of minimum s-t
cut instances. These instances are defined on contractions of G, i.e., graphs obtained from G = (V,E) by
successively contracting nonempty node sets S ⊆ V . When contracting a set S, all vertices of S are replaced
by a single vertex vS with γ(vS) :=

∑
v∈S γ(v), all edges with both endpoints in S are deleted, and each

edge connecting a vertex in S to a vertex u ∈ V \ S is replaced by an edge between u and vS of the same
weight. By construction, a cut C in a contraction of G naturally corresponds to a cut C in G of the same
weight with γ(C) = γ(C), and thus, we can identify these cuts.

59

3 A new contraction technique with applications to congruency-constrained cuts

Theorem 3.3. Consider a CCMC problem on G = (V,E) with constant prime modulus m and nonzero
optimal solution value, and let κ ≥ 1 be a constant. Then there is an efficient randomized method returning
poly(|V |) many minimum s-t cut instances defined on contractions of G such that the following holds with
high probability, where OPT denotes the optimal solution value of the CCMC problem. A cut C (V , C 6= ∅,
is a solution to CCMC of value at most κ · OPT if and only if C is a feasible solution of value at most
κ ·OPT in one of the minimum s-t cut instances (without congruency constraint).

Theorems 3.2 and 3.3 are in fact consequences of more general structural properties of CCMC instances
that are exhibited by our contraction algorithm (see Section 3.4 for more details).

3.1.2 Further discussion on related results

Work on minimum cut problems with constraints of congruency type date back to the early ’80s, when
Padberg and Rao [PR82] presented a method to efficiently find a minimum cut among all cuts with an odd
number of vertices. Barahona and Conforti [BC87] later showed that efficient minimization is also possible
over all cuts with an even number of vertices. Later works by Grötschel, Lovász, and Schrijver [GLS84],
and by Goemans and Ramakrishnan [GR95] generalized these results, by showing that even any submodular
function can be minimized over so-called triple families and, more generally, parity families. Submodular
functions generalize cut functions, and triple as well as parity families capture congruency constraints with
modulus 2. More generally, these approaches even allow for minimizing over all cuts C ⊆ V of cardinality
not congruent to r modulo m, for any integers r and m, which turns out to be a much simpler constraint
than requiring a cardinality congruent to r modulo m. Indeed, CCMC for unbounded m quickly leads to
NP-hard problems, as one could model an arbitrary cardinality constraint through a congruency constraint.
In particular, if G = (V,E) is a graph with an even number of vertices, then seeking a minimum cut C
with |C| ≡ 0 (mod |V |/2) captures the well-known minimum bisection problem. Khot [Kho06] showed that,
unless NP has randomized sub-exponential time algorithms, the minimum bisection problem does not admit
a polynomial time approximation scheme. Hence, it seems unlikely that a PRAS can be obtained for CCMC
without a bound on the modulus.

We briefly mention further works linked to matrices with bounded subdeterminants. This includes the
problem of finding a maximum weight independent set in a graph with constant odd-cycle packing number,
for which a PTAS was obtained by Bock, Faenza, Moldenhauer, Vargas, and Jacinto [BFMR14]. This problem
readily reduces to ILPs with bounded subdeterminants, due to an observation of Grossman, Kulkarni, and
Schochetman [GKS95]. Another recent result by Eisenbrand and Vempala [EV17] is a randomized simplex-
type algorithm for linear programming that is strongly polynomial whenever all subdeterminants of the
constraint matrix defining the LP are bounded by a polynomial in the dimension of the problem. Furthermore,
there has been interesting recent progress on the problem of approximating the largest subdeterminant of a
matrix (see Di Summa, Eisenbrand, Faenza, and Moldenhauer [DEFM15], and Nikolov [Nik15]).

3.1.3 Organization of the chapter

We provide a discussion of the techniques leading to the main contribution of this chapter (Theorem 3.1)
in Section 3.2. Section 3.3 expands on how to find a good distribution of vertex pairs to contract through
splitting-off techniques, completing the proof of Theorem 3.1 given in Section 3.2. Section 3.4 is devoted to
the exploration of furter structural properties of CCMC instances, leading to proofs of Theorems 3.2 and 3.3.
Finally, Section 3.5 presents an alternative splitting-off approach for obtaining a suitable distribution of vertex
pairs to contract.

60

3.2 An overview of our approach

3.2 An overview of our approach

As mentioned, the core of our approach is a contraction procedure inspired by Karger’s global minimum cut
algorithm, where we sample vertex pairs to be contracted from a certain distribution. In fact, the analysis
of Karger’s random contraction algorithm exploits that, whenever a random edge is contracted in a graph
G = (V,E), this contraction is bad with probability at most k/|V | for some constant k ∈ Z>0. More precisely,
in the analysis, an arbitrary minimum cut C is fixed, and a contraction is bad if it contracts two vertices on
different sides of C. The probability of bad contractions being at most k/|V | implies that by contracting until
only k vertices remain, and then enumerating all cuts among those vertices, each minimum cut is found with
probability at least 1/

(|V |
k

).
For CCMC, an important observation is that it suffices to decide which vertices in

V 6≡0 := {v ∈ V | γ(v) 6≡ 0 (mod m)}

are part of a solution. Indeed, for any cut C, the value of γ(C) is determined by the intersection C ∩ V6≡0.
Moreover, for any U ⊆ V 6≡0, the value

ν(U) := min {w(δ(C)) | ∅ (C (V, C ∩ V 6≡0 = U}

and a minimizer CU can be obtained efficiently by a minimum cut computation in a contraction of G.5 As
CU ∩ V6≡0 = U , we have γ(CU) ≡ γ(U) (mod m).

Due to the above, instead of performing contractions over the full graph, as done in Karger’s algorithm,
we only contract pairs in V 6≡0, with the goal to reduce V6≡0 to a constant-size set. If we achieve this, it suffices
to enumerate over all U ⊆ V 6≡0 with γ(U) ≡ r (mod m), minimize ν(U), and return a corresponding cut
CU . The theorem below is a key technical result of this chapter, and shows that a suitable distribution over
vertex pairs in V 6≡0 to contract exists whenever the sum

∑
v∈V6≡0

ν({v}) is large enough.

Theorem 3.4. Let I = (G,w, γ,m, r) be a CCMC instance on G = (V,E). Let α > 0 and c >
0 with

∑
v∈V6≡0

ν({v}) > (2α/c) · |V 6≡0|. Then, there is a distribution D over pairs in V 6≡0 such that

Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
6 c/|V6≡0| for any feasible solution C of I with w(δ(C)) 6 α. Moreover, there

is a procedure to sample from D with running time polynomial in |V | (independent of any other input
parameters).

To prove Theorem 3.4, we use weighted splitting-off techniques on G to construct a weighted auxiliary
graph H on the vertex set V 6≡0. We show that by choosing edges of H with probabilities proportional to the
edge weights, a distribution with the properties highlighted in Theorem 3.4 is obtained. Details of the proof
are discussed in Section 3.3.

Theorem 3.4 with α = OPT (or α slightly larger than OPT) implies that, whenever
∑

v∈V 6≡0
ν({v})

is large compared to OPT, a contraction step has good success probability, similar to Karger’s analysis.
Otherwise, instead of performing a contraction, we approximately reduce the problem to another CCMC
instance with smaller modulus. More precisely, if

∑
v∈V6≡0

ν({v}) is sufficiently small, then there are many
vertices v ∈ V 6≡0 where the smallest cut C{v} ⊆ V separating v from V 6≡0 \ {v} has weight no more than
β = κ ·OPT for a small constant κ. Such cuts are useful to modify a cut with wrong residue class. Indeed,
consider a cut C with small weight w(δG(C)), but γ(C) 6≡ r (mod m). Then, C := C 4 C{v} satisfies
γ(C) ≡ γ(C)± γ(v) (where the sign depends on whether v ∈ C), while the weight w(δ(C)) increased by
at most β compared to w(δ(C)); we recall that β is small with respect to OPT. Our plan is that if we have
enough small cuts C{v}, we can simplify the congruency constraint to one with smaller modulus, because

5If U 6∈ {∅, V 6≡0}, then CU can be computed by contracting U and V6≡0 \ U in G, and by determining a minimum cut in the
contracted graph that separates the two vertices corresponding to the contracted sets. If U ∈ {∅, V 6≡0}, then ν(U) is obtained by
contracting V6≡0 and finding a global minimum cut C in the contracted graph, where C is chosen such that C ∩ V6≡0 = U ; this is
achieved by replacing the computed global minimum cut by its complement if necessary.

61

3 A new contraction technique with applications to congruency-constrained cuts

the small cuts of type C{v} allow for moving solutions into the right residue class. This idea leads to the
following notion of a reduction family.

Definition 3.5 (Reduction family). Let I = (G,w, γ,m, r) be a CCMC instance on the graph G = (V,E).
For β ∈ R>0 and q ∈ [m− 1], a familyR(β, q) ⊆ 2V is a reduction family for I if

(i) R(β, q) = {R1, R2, . . . , R2mq−1} with mq := m
gcd(m,q) , 6

(ii) for each i ∈ [2mq−1], there is one vertex ui ∈ Ri with γ(ui) ≡ q (mod m), and γ(u) ≡ 0 (mod m)
for all other u ∈ Ri \ {ui},

(iii) the vertices u1, . . . u2mq−1 are distinct, and
(iv) w(δ(Ri)) 6 β for all i ∈ [2mq − 1].

A reduction familyR(β, q) allows for correcting the residue class γ(C) of a solution C by any multiple
of q modulo m, with losses in terms of cut weight controlled by the parameter β. Given a reduction family
R(β, q), it is thus sufficient to find a solution C ′ satisfying γ(C ′) ≡ r (mod m′) for m′ = gcd(m, q). This
is formalized in the following lemma.

Lemma 3.6 (Reduction lemma). Let R(β, q) be a reduction family for a CCMC instance (G,w, γ,m, r),
and let m′ = gcd(m, q). Given a cut C ′ (V , C ′ 6= ∅, with γ(C ′) ≡ r (mod m′), one can efficiently (in
running time polynomial in |V | and m) obtain a cut C (V , C 6= ∅, such that

(i) w(δ(C)) 6 w(δ(C ′)) +
(
m
m′ − 1

)
β, and

(ii) γ(C) ≡ r (mod m).

Proof. LetR(β, q) = {R1, R2, . . . , R2mq−1} with distinct ui ∈ Ri for all i ∈ [2mq − 1] as given in item (ii)
of Definition 3.5. We distinguish two cases: Either, there are mq many vertices among the ui with ui ∈ C ′,
or there are mq many with ui 6∈ C ′.

In the first case, assume w.l.o.g. that u1, . . . , umq ∈ C ′, and let Uk :=
⋃k
i=1Ri for k ∈ {0, . . . ,mq − 1}.

We show that for some k, the set Ck := C ′4 Uk has the desired properties. First observe that all Ck are cuts,
as C0 = C ′ is a cut, and u1 /∈ Ck 3 umq for k ∈ [mq − 1]. Moreover, k 6 mq − 1 implies

w(δ(Ck)) 6 w(δ(C ′)) +
k∑
i=1

w(δ(Ri)) 6 w(δ(C ′)) + (mq − 1)β . (3.1)

Usingmq = m
gcd(m,q) = m

m′ , we see that (3.1) is precisely point (i) of Lemma 3.6 forCk. To conclude, we show
that there exists k such that Ck satisfies γ(Ck) ≡ r (mod m), i.e., point (ii). Using that γ(u) ≡ 0 (mod m)
for all u ∈ Ri \ {ui}, and ui ∈ C ′ for all i ∈ [mq], we obtain γ(Ck) ≡ γ(C ′)−

∑k
i=1 γ(ui) ≡ γ(C ′)− kq

(mod m). It thus suffices to find k ∈ {0, . . . ,mq − 1} with γ(C ′)− kq ≡ r (mod m), or equivalently,

kq ≡ γ(C ′)− r (mod m) . (3.2)

By assumption, γ(C ′)− r ≡ 0 (mod m′), so r′ := γ(C′)−r
m′ ∈ Z, and q′ := q

m′ ∈ Z because m′ = gcd(m, q).
Dividing (3.2) by m′, we obtain the equivalent equation kq′ ≡ r′ (mod mq), which has a solution k ∈
{0, . . . ,mq − 1} as gcd(q′,mq) = 1.

The second case, i.e., u1, . . . , umq /∈ C ′, is similar: Ck always is a cut because C0 = C ′ is a cut, and
u1 ∈ Ck 63 umq for k ≥ 1. Equation (3.1) remains true and implies point (i). For point (ii), we use
γ(Ck) ≡ γ(C ′) +

∑k
i=1 γ(ui), and the above analysis results in kq′ ≡ −r′ (mod mq), admitting a solution

k ∈ {0, . . . ,mq − 1}.
Finally, given R(β, q) and C ′, checking which of the two cases applies can be done efficiently, as well

as solving the respective congruence equation for k. Altogether, we conclude that a cut C with the desired
properties can be obtained in running time polynomial in |V | and m.

6gcd(m, q) denotes the greatest common divisor of m and q.

62

3.2 An overview of our approach

The above reduction lemma applied with a reduction family R(β, q) allows for reducing the modulus
from m to a divisor m′ of m, which is strictly smaller than m, as 0 < q < m. We call such a reduction to a
smaller modulus through a reduction family a reduction step. Reduction families exist (and can be found
efficiently) whenever Theorem 3.4 fails to guarantee a distribution with the desired properties for Karger-type
contraction steps, i.e., whenever

∑
v∈V6≡0

ν({v}) is small. In this case, there are many vertices v ∈ V 6≡0

for which ν({v}) is small, i.e., the cut C{v} has small value. A subset of these cuts can then be used as a
reduction family. This idea is concretized in Theorem 3.7 below.

Theorem 3.7. Let I be a CCMC instance with modulus m and let B > 0. Assume that |V 6≡0| > 4m2 and∑
v∈V6≡0

ν({v}) 6 B · |V6≡0|. Then, for some q ∈ [m− 1], one can efficiently (in running time polynomial in
|V | and m) obtain a reduction familyR(2B, q) for I.

Proof. The conditions of Theorem 3.7 imply that at least |V6≡0|/2 ≥ 2m2 many vertices v ∈ V 6≡0 satisfy
ν({v}) 6 2B; indeed, for otherwise∑

v∈V6≡0

ν({v}) > 2B · |V6≡0|
2

= B · |V 6≡0| ,

However, the above inequality contradicts the second assumption, namely
∑

v∈V6≡0
ν({v}) 6 B · |V 6≡0|,

which implies the claim.
For every one of those 2m2 many vertices v ∈ V 6≡0 with ν({v}) 6 2B, there is a corresponding cutC{v} in

G separating v and V6≡0\{v} of valuew(δ(C{v})) 6 2B; moreover, γ(C{v}) ≡ γ(v) 6≡ 0 (mod m) because
v ∈ V 6≡0. Hence, by the pigeonhole principle, there exists q ∈ [m−1] such that at least 2m2

m−1 > 2mmany cuts
C{v} satisfy γ(C{v}) ≡ q (mod m). Let v1, . . . , v2m ∈ V6≡0 be distinct vertices such that {C{vi} | i ∈ [2m]}
are precisely 2m such cuts. For mq = m

gcd(m,q) , the family

R =
{
C{v1}, . . . , C{v2mq−1}

}
is well-defined and fulfils points (i) to (iv) in Definition 3.5 with parameters β = 2B and q. To conclude the
proof of Theorem 3.7, observe thatR can be obtained in running time polynomial in |V | and m by following
the above constructive proof.

A reduction step reduces the modulus m to a divisor strictly smaller than m, hence we can perform at most
log2(m) many reduction steps, and might end up solving a problem with modulus 1, i.e., an unconstrained
minimum cut problem.

Altogether, the ingredients discussed above lead to Algorithm 3.1. This algorithm requires a guess α
for the value of the optimal solution, which we can assume to know up to a factor of (1 + ε) by trying all
polynomially many values

α ∈ {0} ∪
{

(1 + ε)i · wmin

∣∣ 0 6 i 6 dlog1+ε(wtot/wmin)e
}
, (3.3)

where wmin := min{w(e) | e ∈ E, w(e) 6= 0} and wtot := w(E).
As long as |V 6≡0| is large, Algorithm 3.1 contracts two vertices of V 6≡0 whenever the conditions of

Theorem 3.4 are met with c = 4m/ρ. Note that every contraction step reduces the number of vertices in V 6≡0

by one or two, depending on whether γ(u) + γ(v) 6≡ 0 (mod m) or not. The if-block in Algorithm 3.1
performs the enumeration step described earlier once there are at most max

{
4m2, 2 ·

⌈
4m
ρ

⌉}
vertices left in

V 6≡0. If neither of the above is possible, then Theorem 3.7 and Lemma 3.6 allow for a reduction step, which
is executed in the else-block, where we recursively invoke Algorithm 3.1 on an instance with strictly smaller
modulus. Combining the above insights, we can prove the following guarantee for Algorithm 3.1.

Theorem 3.8. Consider a CCMC instance (G,w, γ,m, r) with optimal solution value OPT. Let α > OPT
and ρ > 0. Algorithm 3.1 is an efficient procedure with running time bounded by |V |O(1) + 2O(m2+m/ρ)

that, by using α as an optimal value guess and ρ as error parameter, returns a solution with value at most
OPT + ρα log2m with probability at least 1/

(|V |
d4m/ρe

).
63

3 A new contraction technique with applications to congruency-constrained cuts

Algorithm 3.1: Contraction-Reduction algorithm for CCMC.
Input :CCMC instance I = (G,w, γ,m, r) on G = (V,E), error parameter ρ > 0, optimal value

guess α > 0.

while |V 6≡0| > max
{

4m2, 2 ·
⌈

4m
ρ

⌉}
and

∑
v∈V6≡0

ν({v}) > ρα
2m · |V 6≡0| do

1. Sample a pair {u, v} from the distribution D guaranteed by Theorem 3.4.
2. Modify G by contracting the set {u, v}.

if |V 6≡0| 6 max
{

4m2, 2 ·
⌈

4m
ρ

⌉}
then

1. For every S ⊆ V6≡0 with γ(S) ≡ r (mod m), let
CS ∈ arg min{w(δ(C)) | ∅ (C (V, C ∩ V6≡0 = S} .

2. Among all cuts CS obtained in step 1, let C be one of smallest value w(δ(C)).

return Cut corresponding to C in input graph before contractions.
else

1. Use Theorem 3.7 to get reduction familyR(β, q) for β = ρα
m and some q ∈ [m− 1].

2. Let m′ = gcd(m, q). Apply Algorithm 3.1 recursively to I ′=(G,w, γ,m′, r) with error
parameter ρ and optimal value guess α to obtain a solution C ′ of I ′.

3. Apply Lemma 3.6 to get a solution C of I from C ′ andR(β, q).

return Cut corresponding to C in input graph before contractions.

Proof. The only randomized step of Algorithm 3.1 occurs in the while-loop, where pairs {u, v} for contrac-
tion are sampled. For the analysis, we fix an optimal solution C0 of I, and first assume that no contraction
is bad w.r.t. C0, i.e., that no contraction step contracts two vertices on different sides of C0 throughout
Algorithm 3.1. Under this assumption, we prove by induction on m that Algorithm 3.1 returns a cut C
satisfying w(δ(C)) 6 OPT + ρα log2m.

If m = 1, then V 6≡0 = ∅, hence the algorithm directly executes the if-block, where an unconstrained
minimum cut problem is solved, giving an exact solution. This reflects that for m = 1, CCMC is an
unconstrained minimum cut problem.

Now let m > 1. If no bad contraction is performed, C0 remains feasible after the termination of the
while-loop, and α remains an upper bound on the optimal solution value in the new contracted graph. If
|V 6≡0| 6 max

{
4m2, 2 ·

⌈
4m
ρ

⌉}
, then, in the if-block, all remaining options are enumerated, and an optimal

solution is found. Else, we have |V 6≡0| > 4m2 and
∑

v∈V6≡0
ν({v}) 6 ρα

2m · |V6≡0|, hence by Theorem 3.7
with B = ρα

2m , a reduction familyR(ραm , q) can be found efficiently. We have q ∈ [m− 1] by Theorem 3.7,
so m′ = gcd(m, q) < m. Thus, by the inductive assumption, the recursive application of Algorithm 3.1 in
step 2 of the else-block returns a solution C ′ (V , C ′ 6= ∅, of I ′ with

γ(C ′) ≡ r (mod m′) and w(δ(C ′)) 6 OPT + ρα log2(m′) . (3.4)

Note that in the inequality, we used OPT(I ′) 6 OPT, which follows from the fact that C0 remains feasible
for I ′. By (3.4) and Lemma 3.6, the solution C of I constructed in step 3 is a cut, satisfies γ(C) ≡ r
(mod m), and

w(δ(C)) 6 w(δ(C ′)) +
(m
m′
− 1
) ρα
m

6 OPT + ρα(log2m
′ + 1) 6 OPT + ρα log2m ,

where the last inequality follows from m′ 6 m/2, as m′ is a divisor of m and strictly smaller than m.
This concludes the induction. Thus, if no bad contraction steps are performed, a solution of value at most
OPT + ρα log2m is returned.

We now show that with probability at least 1/
(|V |
d4m/ρe

), no contraction step is bad w.r.t. C0 throughout all
recursive calls of Algorithm 3.1. Assume that overall, there are q contraction steps, and letm1, . . . ,mq ∈ Z≥0

64

3.2 An overview of our approach

and s1, . . . , sq ∈ Z≥0 be such that when the ith contraction step is performed, the modulus is mi and
|V 6≡0| = si. By the condition in the while-loop, we know that when the ith contraction is performed, then∑

v∈V6≡0
ν({v}) > ρα

2mi
· |V6≡0|. Hence, by Theorem 3.4 with c = 4mi

ρ ,

Pr[contraction i is bad w.r.t. C0] 6
4mi

ρ · |V 6≡0|
6
ki
si

,

where ki :=
⌈

4mi
ρ

⌉
, holds for all i ∈ [q]. Consequently,

Pr[no contraction is bad w.r.t. C0] >
q∏
i=1

(
1− ki

si

)
. (3.5)

To bound the latter product from below, we exploit the following three facts.
(i) For x ∈ Z, let κ(x) := max{ki | i ∈ [q] : x > 2ki}, which is finite if x > min{2k1, . . . , 2kq}. As

si > 2ki by the contraction conditions, κ(si) > ki.
(ii) The sequence (si)i∈[q] measures the size of V6≡0, which decreases in each contraction step, and never

increases. In particular,
|V | ≥ s1 > s2 > . . . > sq ≥ 2kq + 1 .

(iii) The sequence (ki)i∈[q] is decreasing, and it drops precisely when reduction steps are performed. Thus,
there exists p 6 q and a1, . . . , ap ∈ [q] such that ka1 > ka2 > . . . > kap are all values taken by the
sequence (ki)i∈[q]. Note that in particular, ka1 = k1 =

⌈
4m
ρ

⌉
.

Using this, we get

q∏
i=1

(
1− ki

si

)
(i)
>

q∏
i=1

(
1− κ(si)

si

)
(ii)
>

|V |∏
i=2kq+1

(
1− κ(i)

i

)
(iii)
>

2kap−1∏
i=2kap+1

(
1−

kap
i

)
· . . . ·

2ka1∏
i=2ka2+1

(
1− ka2

i

)
·

|V |∏
i=2ka1+1

(
1− ka1

i

)

=

(2kap
kap

)
(2kap−1

kap

) · . . . ·
(2ka2
ka2

)
(2ka1
ka2

) ·
(2ka1
ka1

)
(|V |
ka1

) >

(2kap
kap

)
(|V |
ka1

) >
1(|V |

d4m/ρe
) . (3.6)

For the penultimate inequality we use
(2kaj
kaj

)
≥
(2kaj
kaj+1

)
for j ∈ [p− 1], and the last inequality follows from(2kap

kap

)
≥ 1. Combining (3.5) and (3.6), we get the desired bound.

To prove the running time guarantee, first assume that |V | 6 m, in which case the enumeration step is
executed directly, giving a running time of 2O(|V |), which is less than the claimed bound. Thus, assume that
|V | > m from now on. Overall, there are less than |V | many contraction steps, each with a running time
polynomial in |V | by Theorem 3.4, giving a bound of the form |V |O(1) for all contraction steps together.
Moreover, there are at most log2(m) many reduction steps as observed earlier, each with running time
polynomial in m and |V | by Lemma 3.6 and Theorem 3.7. As |V | > m by assumption, this shows that
reduction steps take time bounded by |V |O(1), as well. Finally, the algorithm enumerates subsets of a set of
size at most max{4m2, 2 · d4m/ρe}, i.e., 2O(m2+m/ρ) many sets. Adding these bounds gives the result.

Guessing the optimal solution value up to a factor (1 + ε) and repeating Algorithm 3.1 polynomially often
independently implies our main result, Theorem 3.1.

Proof of Theorem 3.1. For all polynomially many values of α given in (3.3), we run Algorithm 3.1 with
ρ = ε

(1+ε) log2(m) for
(|V |
d4m/ρe

)
log |V | many times independently, and we return the best solution found over

65

3 A new contraction technique with applications to congruency-constrained cuts

all iterations. By Theorem 3.8, for α ∈ [OPT, (1 + ε)OPT), a single iteration returns a (1 + ε)-approximate
solution with probability at least 1/

(|V |
d4m/ρe

). Hence, among all iterations with this α, a (1 + ε)-approximate
solution is found with probability at least

1−

(
1− 1(|V |

d4m/ρe
))(|V |d4m/ρe)·log |V |

> 1− e− log |V | = 1− 1

|V |
.

From the above proof of Theorem 3.1, we can immediately obtain a bound on the running time of our
PRAS for CCMC: There are⌈

log1+ε

(
wtot

wmin

)⌉
+ 2 = O

(
log |V |+ log(wmax

wmin
)

log(1 + ε)

)

many guesses for the value of α, where we exploit that wtot 6 |V |2 ·wmax. For each of these guesses, we run
Algorithm 3.1 for

(|V |
d4m/ρe

)
log |V | = |V |O(1+ε

ε m logm) many times independently. Finally, by Theorem 3.8,

every such run takes time |V |O(1) + 2O(m2+ 1+ε
ε m logm). Together, this gives a running time bound of the

form
log(wmax

wmin
)

log(1 + ε)
· |V |O(1+ε

ε m logm) · 2O(m2) ,

which can be simplified to log
(
wmax
wmin

)
· |V |O

(
m logm

ε

)
·2O(m2) for ε < 1. We remark that, by using Megiddo’s

parametric search technique [Meg79; Meg83], we can get rid of the factor log
(
wmax
wmin

)
and thus obtain a

strongly polynomial time algorithm at the expense of a larger constant in the exponent of |V | that is hidden
by the O-notation.

3.3 Good contraction distributions through splitting-off

To obtain a good distribution for Karger-type contractions (Theorem 3.4), we construct a weighted auxiliary
graph H = (V 6≡0, F), and then select a pair of vertices {u, v} ∈ F for contraction in G with probabilities
proportional to the edge weights in H . The construction of H is based on splitting-off techniques, which,
loosely speaking, allow for modifying a given graph such that certain connectivity properties are preserved.
Our interest lies in preserving the values ν({v}) = µG,w({v}, V6≡0 \ {v}) for all v ∈ V6≡0, where we use the
notation µG,w(A,B) := min{w(δ(C)) | A ⊆ C ⊆ V \B}. This is achieved by the following theorem.

Theorem 3.9. Let G = (V,E) be a graph with edge weights w : E → R>0, and let Q ⊆ V . There is a
strongly polynomial time algorithm to obtain a graph H = (Q,F) and edge weights wH : F → R>0 such
that

(i) wH(δH(q)) = µG,w({q}, Q \ {q}) for all q ∈ Q, and
(ii) wH(δH(C ∩Q)) 6 w(δG(C)) for all C ⊆ V .

We remark that similar theorems are known in literature, and there are various ways to derive the version
above, which we need for our purposes. A splitting-off theorem of Lovász [Lov76] gives the existential
result in an unweighted setting, and allows an immediate generalization to the weighted setting. Alternatively,
the non-algorithmic version of Theorem 3.9 can also be seen to be an implication of a result on weakly
parsimonious set functions by Bertsimas and Teo [BT97], which uses splitting-off, as well. In order to obtain
strongly polynomial algorithms complementing the existential results, ideas of Frank [Fra92] can be used. A
full proof of Theorem 3.9 combining Lovász’ splitting-off result and Frank’s ideas is given in Section 3.3.1.
Let us now show how Theorem 3.9 is used to prove Theorem 3.4.

66

3.3 Good contraction distributions through splitting-off

Proof of Theorem 3.4. Apply Theorem 3.9 to (G,w) with Q = V 6≡0 to obtain the graph H = (V6≡0, F) with
weights wH . The distribution D over vertex pairs {u, v} we use is given by choosing {u, v} ∈ F with
probability proportional to wH({u, v}). By Theorem 3.9 (i),

2 · wH(F) =
∑
v∈V6≡0

wH(δH(v)) =
∑
v∈V6≡0

µG,w({v}, Q \ {v}) =
∑
v∈V6≡0

ν({v}) .

If C is a solution of I with w(δ(C)) 6 α, then by choice of D and the above,

Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
=
wH(δH(C ∩ V6≡0))

wH(F)
6

2 · w(δG(C))∑
v∈V6≡0

ν({v})
6

c

|V6≡0|
,

as desired, where the inequalities are due to Theorem 3.9 (ii), w(δG(C)) 6 α, and the assumption∑
v∈V6≡0

ν({v}) > 2α
c · |V 6≡0| in Theorem 3.4. To finish the proof, observe that the auxiliary graph H

can be constructed in time polynomial in |V | by Theorem 3.9, and the sampling procedure can be realized in
running time polynomial in |V |, too.

3.3.1 Proof of Theorem 3.9

As indicated above, Theorem 3.9 is a consequence of splitting-off techniques from Graph Theory, a
fundamental tool dating back to the ’70s [Lov76; Mad78; Lov79]. In this context, a graph is typi-
cally modified by repeatedly splitting off two edges from a vertex v, i.e., replacing two non-parallel
edges {v, x} and {v, y} by a new edge {x, y}, or deleting two parallel edges incident to v. Denoting
µG(A,B) := min{|δG(C)| | A ⊆ C ⊆ V \B} for a graph G = (V,E) and A,B ⊆ V , Lovász proved the
following.

Theorem 3.10 (Lovász [Lov76]). Let G = (V,E) be Eulerian, let Q ⊆ V , and let v ∈ V \Q. For every
edge {v, x} ∈ E, there exists another edge {v, y} ∈ E such that the graph G′ arising from G by splitting off
{v, x} and {v, y} from v satisfies

µG({q}, Q \ {q}) = µG′({q}, Q \ {q}) ∀q ∈ Q .

Iterative applications of Theorem 3.10 for fixed Q ⊆ V and v ∈ V \Q result in a new graph on the vertex
set V \ v only, without changing the value of minimum cuts separating a single vertex q from Q \ {q}, for all
q ∈ Q. We aim for a generalization of this statement to a weighted setting, where the graph G = (V,E) has
edge weights w : E → R>0, a splitting operation consists of decreasing the weight on two edges {v, x} and
{v, y} by some ε > 0 while increasing the weight on the edge {x, y} by ε, and we want the weighted cut
values µG,w({q}, Q \ {q}) to be invariant. We claim that this is achieved by Algorithm 3.2. We highlight
that efficient weighted versions of other splitting-off results (than Theorem 3.10) have already been studied
extensively (see [Fra92; Gab94; NI94; Ben95; NI96; BK98; NI00; BHKP08; LY13]), and our method is
heavily inspired by an approach of Frank [Fra92].

In each iteration of the outer for-loop in Algorithm 3.2, we split off ε > 0 from {v, x} and {v, y}, with ε
chosen maximal so that all weights remain non-negative and the connectivities of interest are preserved. This
choice of ε implies that once the outer for-loop terminated, there is no pair of edges incident to v from which
a positive weight can be split off. Uniformly scaling all weights of this remaining graph to even integral
weights (which we interpret as edge multiplicities) and employing Theorem 3.10, we can prove that there can
only be a single edge with positive weight incident to v in the remaining graph, which we can thus safely
delete without affecting connectivities within V \ {v}.

The following lemma summarizes the guarantees that we thereby obtain for Algorithm 3.2.
7If q ∈ {x, y}, then cq2 = µG,w({q, v}, (Q \ {q}) ∪ {x, y}) is the value of an infeasible cut problem (because both arguments

of µG,w contain q), which we interpret as∞.

67

3 A new contraction technique with applications to congruency-constrained cuts

Algorithm 3.2: Fractionally splitting off a single vertex.
Input :Graph G = (V,E) with edge weights w : E → R>0, Q ⊆ V , v ∈ V \Q.

foreach x, y ∈ NG(v) := {z ∈ V \ {v} | {v, z} ∈ E}, x 6= y do
foreach q ∈ Q do

Calculate the min cut sizes
cq1 = µG,w({q}, Q \ {q}) , cq2 = µG,w({q, v}, (Q \ {q}) ∪ {x, y}) , 7

and cq3 = µG,w({q, x, y}, (Q \ {q}) ∪ {v}) .

Split off ε from e1 = {v, x} and e2 = {v, y}, where

ε = min
q∈Q

min
{

(cq2 − c
q
1)/2, (cq3 − c

q
1)/2, w(e1), w(e2)

}
.

return Modified graph G with vertex v deleted and modified weights w.

Lemma 3.11. Let G = (V,E) be a graph with edge weights w : E → R>0, let Q (V and v ∈ V \Q. On
this input, Algorithm 3.2 returns, in running time dominated byO(|V |3) many minimum s-t cut computations
in contractions of (G,w), a graph H = (V \ {v}, F) with edge weights wH : F → R>0 such that

(i) µH,wH ({q}, Q \ {q}) = µG,w({q}, Q \ {q}) for all q ∈ Q, and
(ii) wH(δH(C \ {v})) 6 w(δG(C)) for all C ⊆ V .

Proof. Consider a splitting operation performed in Algorithm 3.2 on edges e1 = {v, x} and e2 = {v, y} for
x 6= y, i.e., the weights on e1 and e2 are decreased by ε while the weight on {x, y} is increased by ε. Such an
operation changes the values of precisely those cuts that separate v from {x, y}, and their values all decrease
by 2ε. Thus, cut values never increase in splitting steps, and neither do they when deleting v at the end of
Algorithm 3.2, implying point (ii).

Moreover, observe that cq2 and cq3 computed in Algorithm 3.2 are precisely the minimum values of cuts
separating q from Q \ {q} and v from {x, y}. Thus, choosing ε 6 min

{
(cq2 − c

q
1)/2, (cq3 − c

q
1)/2
}

guarantees
that the values of these cuts do not decrease below µ({q}, Q \ {q}). In other words, µ({q}, Q \ {q}) remains
invariant under all splitting operations in Algorithm 3.2. Additionally, ε 6 min{w(e1), w(e2)} ensures that
edge weights are always non-negative.

The extremal choice of ε implies that after the splitting operation is applied to a pair of edges (e1, e2),
either one of w(e1) and w(e2) is zero, or there is a vertex q ∈ Q and a cut C ⊆ V with the following property:
C separates q from Q \ {q} as well as v from {x, y}, and w(δ(C)) = µ(q,Q \ {q}). We call such a cut
tight for the pair (e1, e2), as any further reduction of w(e1) or w(e2) would reduce the value of C and hence
also µ(q,Q \ {q}). Observe that once a cut is tight for a pair of edges, it remains tight under all subsequent
splitting operations.

Let (G′, w′) be the weighted graph obtained from (G,w) after performing all O(n2) splitting operations
in Algorithm 3.2. We claim that (G′, w′) has at most one edge with non-negative weight incident to v. If
so, deleting v (and all its incident edges) from G′ does not reduce µ(q,Q \ {q}) for any q ∈ Q, hence the
resulting graph has the desired properties. To see the claim, assume by contradiction that in (G′, w′), there is
more than one edge with positive weight incident to v. Then, there is a tight cut for each pair of such edges,
implying that none of the edge weights can be reduced without reducing µ(q,Q \ {q}) for some q ∈ Q. Now
scale w′ by an integer M > 0 such that all edge weights become even integers, and interpret these edge
weights as edge multiplicities. Doing so, we obtain an Eulerian graph to which Theorem 3.10 is applicable,
resulting in a pair of (potentially parallel) edges that can be split off from v without affecting µ(q,Q \ {q}).
But deleting an edge incident to v in this new graph corresponds to reducing the weight of the corresponding
edge in G′ by 1/M. By assumption, the latter does reduce µ(q,Q \ {q}), a contradiction.

Finally, observe that the values µG,w(A,B) needed in Algorithm 3.2 are infinite if A ∩B 6= ∅, and else
they can be computed as the values of minimum s-t cuts in the contraction ofG whereA andB are contracted
to vertices s and t, respectively. Three such values are computed for every triple (x, y, q) consisting of

68

3.4 Further structural properties and their implications

x, y ∈ NG(v) with x 6= y and q ∈ Q, and these O(|V |3) many minimum s-t cut computations indeed
dominate the overall running time.

Applying Lemma 3.11 iteratively for all v ∈ V \ Q reduces the graph G to the vertex set Q while
maintaining the desired cut sizes, and thus immediately yields Theorem 3.9.

As indicated earlier in this section, there are different versions of splitting-off techniques. Some better
known ones, for which strongly polynomial algorithms are already known, preserve pairwise connectivities
among vertices in Q ⊆ V instead of fulfilling the guarantees stated in Theorem 3.10. In Section 3.5, we show
that under slightly stronger assumptions, these standard splitting-off techniques can also be used to obtain
contraction distributions with the properties given in Theorem 3.4, with the necessary stronger assumptions
leading to a weaker running time guarantee for Algorithm 3.1.

3.4 Further structural properties and their implications

Karger’s mininum cut algorithm also provides a means of proving that a minimum cut problem has only
polynomially many optimal solutions, and repeated applications of Karger’s algorithm can find all these
solutions with high probability. As discussed, analogous results cannot hold for CCMC problems. Note that
in contrast to Karger’s algorithm, our Contraction-Reduction Algorithm does not contract pairs of vertices
until only two of them are left, but it stops early and terminates in an enumeration phase, solving reduced s-t
cut problems. Following the spirit of the above-mentioned implications of Karger’s algorithm, we obtain
a structural result on these s-t cut instances. To state this result in full generality, we need the following
congruency-constrained version of minimum s-t cut problems.

Congruency-Constrained Minimum s-t Cut (s-t CCMC): Let G = (V,E) be an undirected
graph with edge weights w : E → R>0 and let γ : V → Z>0. Let m ∈ Z>0 and r ∈ Z>0, and let
s, t ∈ V be two distinct vertices. The task is to find a minimizer of

min

{
w(δ(C))

∣∣∣∣∣ {s} ⊆ C ⊆ V \ {t}, ∑
v∈C

γ(v) ≡ r (mod m)

}
.

Note that s-t CCMC problems can easily be modeled by CCMC problems if one allows to increase the
modulus by an additional factor.8 The subsequent theorem shows that the opposite reduction can be done,
as well: Every CCMC problem can be reduced to polynomially many s-t CCMC problems with a smaller
modulus.

Theorem 3.12. Consider a CCMC problem on G = (V,E) with constant modulus m > 1 and nonzero opti-
mal value, and let κ ≥ 1 be a constant. Then there is an efficient randomized algorithm returning poly(|V |)
many s-t CCMC instances that (i) are defined on contractions of G with modified vertex multiplicities, and
(ii) have a modulus that is a divisor of m strictly smaller than m, such that the following holds with high
probability, where OPT denotes the optimal solution value of the initial CCMC problem: A cut C (V ,
C 6= ∅, is a solution to the initial CCMC problem of value at most κ · OPT if and only if C is a feasible
solution of value at most κ ·OPT in one of the returned s-t CCMC instances.

While the reduction of the modulus m obtained in the above theorem looks promising, the additional
hurdle introduced by the transition to s-t CCMC instances seems to be substantial. We know efficient
algorithms only for very special cases of s-t CCMC instances, one of them being the case of prime moduli,
where a reduction to congruency-constrained submodular minimization is possible. This can be exploited to
prove Theorem 3.2.

8An s-t CCMC instance (G,w, γ,m, r, s, t) is captured by the CCMC instance (G,w, γ̂, m̂, r̂), where γ̂(v) = 3 · γ(v) for
v /∈ {s, t}, γ̂(s) = 3 · γ(s) + 1, γ̂(t) = 3 · γ(t) + 2, m̂ = 3 ·m, and r̂ = 3 · r + 1, for example.

69

3 A new contraction technique with applications to congruency-constrained cuts

Proof of Theorem 3.2. Let I be the given CCMC instance with modulus m that is a product of two primes.
Let C be an optimal solution of I and denote its value by OPT. If OPT = 0, an optimal solution can be
found easily by contracting the components and finding a union of them satisfying the congruency constraint.
Else, an application of Theorem 3.12 to I with κ = 1 results in a polynomial number of s-t CCMC instances
I1, . . . , I`. By Theorem 3.12, C is a feasible solution to at least one of these instances with high probability.
On the other hand, Theorem 3.12 also asserts that the instances I1, . . . , I` are defined on contractions of
the initial graph G with weights induced by the initial weights, hence their optimal values are all at least
OPT. Thus, we conclude that with high probability, C is an optimal solution to at least one of the instances
I1, . . . , I`.

To conclude Theorem 3.2, it is enough to show that the instances I1, . . . , I` can all be solved in polynomial
time. To see this, fix an instance Ik. By Theorem 3.12, its modulus m′ is a divisor of m that is strictly
smaller than m. As m is a product of two primes, m′ equals 1 or is a prime number. In the first case, Ik is
an unconstrained minimum s-t cut problem, which can be solved efficiently. In the other case, Ik is a s-t
CCMC instance with modulus equal to a prime number. This problem can easily be seen to be a special case
of congruency-constrained submodular function minimization with prime modulus, which can be solved
efficiently and to optimality as shown in [NSZ19].

Finally, if the modulus of the input problem in Theorem 3.12 is a prime number, the only feasible reduction
of the modulus to one of its divisors is a reduction to modulus 1—and hence, to s-t cut problems without
congruency constraint, which we exploit to prove Theorem 3.3.

Proof of Theorem 3.3. An application of Theorem 3.12 to the given instance with the given parameter κ
results in polynomially many s-t CCMC instances. As the modulus of the given instance is a prime number,
Theorem 3.12 implies that all the returned instances have modulus 1, i.e., they are in fact minimum s-t cut
problems (without congruency constraint). Thus, Theorem 3.12 asserts that these instances have precisely
the properties claimed by Theorem 3.3.

3.4.1 Proof of Theorem 3.12

In this section, we show that Theorem 3.12 can be deduced from Algorithm 3.1. To this end, we add some
further insights to the discussion of Algorithm 3.1 given in Section 3.2. In particular, observe that during a
call of the algorithm on a CCMC instance I = (G,w, γ,m, r), the input graph G is repeatedly modified by
random contractions, until the if-block of Algorithm 3.1 is reached (potentially only after several recursive
calls to itself). Within the if-block, problems of the form

min{w(δ(C)) | ∅ (C (V, C ∩ V 6≡0 = S} (3.7)

are solved for certain sets S ⊆ V6≡0. Problems of this type can be immediately reduced to minimum s-t cut
problems in a further contracted graph: If S /∈ {∅, V6≡0}, then contract S and V 6≡0 \ S to vertices s and t,
respectively, and the problem in (3.7) is equivalent to the minimum s-t cut problem in the contracted graph.
If S = ∅, contract V 6≡0 to a vertex t, and a solution of (3.7) can be obtained by solving the minimum v-t cut
problems for all v ∈ V \ V6≡0 and returning the solution of minimum value. Similarly, if S = V 6≡0, contract
V 6≡0 to a vertex s, and the best solution among all solutions to the minimum s-v cut problems for v ∈ V \V 6≡0

solves (3.7).
Recall that these minimum s-t cut instances on contractions of G come with weights and vertex multiplici-

ties induced by the original weights w and vertex multiplicities γ such that any cut C in the contracted graph
has the same weight w(δ(C)) and value γ(C) as the corresponding cut in the initial graph. Hence, after
imposing the original congruency constraint γ(C) ≡ r (mod m), we obtain s-t CCMC instances which
we call the instances reached by Algorithm 3.1. Note that these instances have modulus m equal to the
input modulus, and not the potentially smaller modulus that is used in the call where the if-block is reached.
The instances defined this way have several useful properties, and we will see that they are essentially the

70

3.4 Further structural properties and their implications

instances claimed by Theorem 3.12. More precisely, the only missing property compared to the instances
in Theorem 3.12 is that they still have modulus m. In Lemma 3.17, we will see that their structure allows
for reducing the modulus to a divisor of m that is strictly smaller than m. Finally, analogous to the proof
of Theorem 3.1, to obtain a sufficiently high success probability, we will run Algorithm 3.1 multiple times
independently, and consider all s-t CCMC problems reached by these runs to construct the desired family of
s-t CCMC problems as claimed in Theorem 3.12.

We start with two quick observations. First, note that the enumeration is done only if V6≡0 reaches constant
size, hence there are at most poly(|V |) many candidates S ⊆ V6≡0 to be enumerated over. For every such
choice of S, Algorithm 3.1 reaches either a single or linearly many s-t CCMC instances. Combining these
arguments, we obtain Observation 3.13.

Observation 3.13. The family of s-t CCMC instances reached by Algorithm 3.1 in a single run has size at
most poly(|V |).

Additionally, note that contractions and the transition from a global cut problem to an s-t cut problem for
certain vertices s and t of the graph only reduce the set of feasible solutions, implying Observation 3.14.

Observation 3.14. A cut C that is feasible for an s-t CCMC instance reached by Algorithm 3.1 is feasible
for the input problem, and the weight of the cut is the same with respect to the two instances.

For the other direction, we saw in the proof of Theorem 3.8 that for a suitable guess α of the optimal
solution value, an optimal solution C of the input CCMC problem is not destroyed in the random contraction
phase of Algorithm 3.1 (i.e., none of the contractions are applied to two vertices lying on different sides of
C) with probability at least 1/poly(|V |). The following lemma shows that with a slightly larger choice of the
optimal solution value guess, this result extends to almost-minimum cuts.

Lemma 3.15. Let I be a CCMC instance with optimal solution value denoted by OPT, let κ > 1, and
let F be the family of s-t CCMC instances reached by Algorithm 3.1 on input I with optimal value guess
α > κ ·OPT and error parameter ρ > 0. Then, the probability that a feasible solution C of I with value at
most κ ·OPT is also feasible for at least one of the instances in F is at least 1/

(|V |
d4m/ρe

).
Proof. Fix a feasible solution C of I with w(δ(C)) 6 κ · OPT. Let mi ∈ Z≥0 and si ∈ Z≥0 denote
the modulus and the size of V 6≡0, respectively, when the ith contraction step is performed. By assumption,
α > κ ·OPT, hence Theorem 3.4 with c = 2mi/ρ guarantees that

Pr[contraction i is bad w.r.t. C] 6
4mi

ρ · |V6≡0|
6
ki
si

,

where we define ki :=
⌈

4mi
ρ

⌉
. Following the very same reasoning as in the proof of Theorem 3.8, we get

Pr

[
no random contraction is bad w.r.t. C

throughout a full run of Algorithm 3.1 on I

]
>

1(|V |
k1

) =
1(|V |

4m/ρ

) .

Thus, with the above probability, C is still feasible once Algorithm 3.1 reaches the if-block. In this case,
among all s-t CCMC instances reached by Algorithm 3.1 in the if-block, the cut C is feasible for at least the
one instance reached when choosing S = V 6≡0 ∩ C. This concludes the proof.

Besides preserving almost-minimum cuts with inverse polynomial probability, the s-t CCMC instances
reached by Algorithm 3.1 have structured vertex multiplicities γ as stated by Lemma 3.16 below. This
structure directly reflects the enumeration step performed in the if-block of Algorithm 3.1, where the choice
of a suitable subset S ⊆ V 6≡0 guarantees that the remaining congruency constraint (note that at this stage, the
modulus may have reduced to a divisor m0 of m) is satisfied for every feasible solution of the resulting s-t
cut problem. Showing that we must have m0 > 1 under a mild assumption on the algorithm parameters α
and ρ, we obtain the following.

71

3 A new contraction technique with applications to congruency-constrained cuts

Lemma 3.16. Let I = (G,w, γ,m, r) be a CCMC instance such that m > 1 and denote its optimal value
by OPT. Let I ′ = (G′, w′, γ′,m, r, s, t) be an s-t CCMC instance reached by Algorithm 3.1 in a call on I
with error parameter ρ > 0 and optimal solution guess α > 0 such that ρα < OPT. Then, there exists a
divisor m0 of m with m0 > 1 such that γ(v) ≡ 0 (mod m0) for all vertices v of G′ with v /∈ {s, t}.

Proof. When processing a CCMC instance I , Algorithm 3.1 starts with repeatedly doing random contractions
and reduction steps, with each of the latter ones issuing a recursive call to Algorithm 3.1 using a modulus
that is a divisor of the input modulus m. When there are only few vertices in V6≡0 left, an enumeration over
subsets of V 6≡0 is performed. Let m0 be the modulus used when the if-block is started, and let S ⊆ V 6≡0 be
the subset used in the enumeration step to reach I ′. If S ∈ {∅, V6≡0}, then the set V6≡0 is contracted and used
in I ′ as vertex s or t. In the other case, S and V 6≡0 \ S get contracted to the vertices s and t. Thus, in both
cases, a vertex v of the contracted graph different from s and t lies in V \ V 6≡0, so by definition of V6≡0, it
satisfies γ(v) ≡ 0 (mod m0).

Consequently, it remains to prove that m0 > 1. To this end, assume m0 = 1 and consider the reduction
step that leads to the recursive call of Algorithm 3.1 with modulus 1. This reduction step can only be
performed if there is a reduction family R(β, q) for β = ρα

m and some q ∈ [m − 1] with gcd(m, q) = 1,
where the latter condition comes from the assumption that the modulus is reduced to 1. By definition of a
reduction family, we have |R(β, q)| = 2m− 1, i.e.,R(β, q) = {R1, . . . , R2m−1}, and every set Ri contains
one vertex ui with γ(ui) ≡ q (mod m), while all other vertices have γ-value 0 (mod m). Furthermore,
the vertices u1, . . . , u2m−1 are all distinct. Let k ∈ [m] be such that qk ≡ r (mod m) (such a k exists as
gcd(m, q) = 1), and let C := R1 ∪ . . . ∪ Rk. Observe that C is feasible for I, as ∅ 6= C (V because
u1 ∈ C and u2m−1 /∈ C, and γ(C) =

∑k
i=1 γ(ui) ≡ k · q ≡ r (mod m). But

w(δ(C)) 6
∑
i∈[k]

w(δ(Ri)) 6 k · β 6 ρα < OPT ,

contradicting that OPT is the optimal solution value of I. Thus indeed, we must have m0 > 1.

We remark that the assumptions of Lemma 3.16 imply OPT > 0, which is inevitable. Indeed, consider an
instance only consisting of isolated vertices with γ(v) ≡ 1 (mod m) and congruency constraint γ(C) ≡ 1
(mod m). As there are no edges at all, no contractions can be applied, and an efficient enumeration is
not possible either, leaving only a reduction to modulus 1—making an argument as in the previous proof
impossible. This also explains why we have to assume that the optimal solution value is nonzero in
Theorem 3.12.

Furthermore, note that in the proof of Lemma 3.16, we show that the modulus m0 that is used when
reaching the enumeration phase satisfies m0 > 1 if ρα < OPT. Equivalently, Algorithm 3.1 never reduces
to global minimum cut instances for input moduli m > 1. In particular, no reduction steps are performed at
all if m is a prime, hence in this case and under the given condition on ρ and α, we see that Algorithm 3.1 is
exact.

Finally, it is easy to observe that the structured CCMC instances as specified in Lemma 3.16 can be
transformed to equivalent s-t CCMC instances with strictly smaller modulus.

Lemma 3.17. Let I = (G,w, γ,m, r, s, t) be an s-t CCMC instance on a graph G = (V,E) such that
there exists a divisor m0 of m satisfying γ(v) ≡ 0 (mod m0) for all vertices v ∈ V \ {s, t}. Then, we can
efficiently obtain an s-t CCMC instance I ′ on the same edge-weighted graph G with modulus m/m0 such that
a cut C ⊆ V is feasible for I if and only if C is feasible for I ′.

Proof. If I is infeasible, there is nothing to show (and feasibility can be checked efficiently). In the other case,
we must have γ(s) ≡ r (mod m0), hence r′ := r−(γ(s) mod m0)

m0
∈ Z, where for v ∈ V , (γ(v) mod m0)

denotes the smallest non-negative integer k such that γ(v) ≡ k (mod m0). Moreover, let m′ := m
m0
∈ Z,

and define γ′ : V → Z>0 by

γ′(v) =
γ(v)− (γ(v) mod m0)

m0

72

3.5 Weaker contraction distributions from standard splitting techniques

for all v ∈ V . We claim that I ′ = (G,w, γ′,m′, r′, s, t) has the desired properties.
To see this, let C ⊆ V be a feasible solution for I. Then γ(C) ≡ r (mod m), and thus by definition of

γ′ and as γ(v) ≡ 0 (mod m0) for all v ∈ C \ {s},

m0 · γ′(C) = γ(C)− (γ(s) mod m0)

≡ r − (γ(s) mod m0)

≡ m0 · r′ (mod m) ,

and thus, after division by m0, γ′(C) ≡ r′ (mod m′), so C is feasible for I ′. For the other direction,
let C ⊆ V be feasible for I ′, i.e., γ′(C) ≡ r′ (mod m′). After multiplication by m0, the latter gives
m0 · γ′(C) ≡ r − (γ(s) mod m0) (mod m), hence

γ(C) = m0 · γ′(C) + (γ(s) mod m0) ≡ r (mod m) ,

so C is feasible for I. Finally, observe that I ′ can obviously be obtained from I efficiently.

From the above findings, we can now complete a proof of Theorem 3.12.

Proof of Theorem 3.12. Let I be the given CCMC instance. For all polynomially many values

α ∈
{
κ · 2j · wmin

∣∣ 0 6 j 6 dlog2(wtot/wmin)e
}
,

we run Algorithm 3.1 on I with ρ = 1
2κ for

(|V |
d8κme

)
log |V | times independently, obtaining families Fαi of s-t

CCMC instances reached by the algorithm with guess α in the ith run. By Observation 3.14, any cut C that is
a solution to one of the problems in

⋃
α,iFαi is a solution to I , as well, and the solutions have the same value.

For the other direction, fix a solution C of I with value at most κ ·OPT, and consider the families Fαi
obtained from a run of Algorithm 3.1 with α ∈ [κ · OPT, 2κ · OPT). By Lemma 3.15, for each of these(|V |
d8κme

)
log |V | many families Fαi , the following is true: With probability 1/

(|V |
d8κme

), it contains an s-t CCMC
instance for which C is feasible. Consequently, with probability at least

1−

(
1− 1(|V |

d8κme
))(|V |d8κme)·log |V |

> 1− e− log |V | = 1− 1

|V |
,

the cut C is feasible for at least one instance in
⋃
iFαi . As by Observation 3.13, every family Fαi has

polynomial size, and because we generated polynomially many such families, F :=
⋃
i,αFαi has polynomial

size. Thus, the s-t CCMC instances in F have all properties stated in Theorem 3.12 except for the fact that
their modulus is still m. But, by Lemma 3.16 (note that ρα < OPT as α < 2κ ·OPT), the instances in F
satisfy the assumptions of Lemma 3.17, and thus can be transformed to equivalent instances on the same
edge-weighted graphs with moduli that are divisors of m and strictly smaller than m, as desired.

3.5 Weaker contraction distributions from standard splitting techniques

The proof of Theorem 3.4 given in Section 3.3 is built on an algorithmic version of the splitting-off theorem
by Lovász (Theorem 3.10), which allows for reducing a graph G = (V,E) while preserving the sizes of
minimum cuts separating the sets {q} and Q\{q} for a fixed Q ⊆ V and all q ∈ Q. This splitting-off version
is much less known and studied than the most common variant which preserves all pairwise connectivities
among vertices in a subset Q ⊆ V . In this section, we show that these better-known splitting-off versions, for
which strongly polynomial algorithms are already known, also allow for constructing contraction distributions
for our purposes that are only slightly weaker than those obtained in Section 3.3.

Let us start by stating one of the above-mentioned standard versions of splitting-off results, namely a
theorem of Frank [Fra92]. We write µG,w(s, t) instead of µG,w({s}, {t}) for the value of a minimum cut
separating distinct vertices s and t.

73

3 A new contraction technique with applications to congruency-constrained cuts

Theorem 3.18 (Frank [Fra92]). 9 Let G = (V,E) be a graph with edge weights w : E → R>0, and let
Q ⊆ V . Then there is a strongly polynomial time algorithm to obtain a graph H = (Q,F) and edge weights
wH : F → R>0 satisfying

(i) µG,w(s, t) = µH,wH (s, t) for all s, t ∈ Q with s 6= t, and
(ii) wH(δH(C ∩Q)) 6 w(δG(C)) for all C ⊆ V .

For the rest of this section, let us fix a CCMC instance I = (G,w, γ,m, r) with graph G = (V,E), and
let H = (V 6≡0, F) with edge weights wH : F → R>0 be a graph obtained by applying Theorem 3.18 to
(G,w) with Q = V6≡0. Moreover, let D be the distribution over vertex pairs {u, v} ⊆ V given by choosing
{u, v} ∈ F with probability proportional to wH({u, v}). For this distribution D, we show the following
theorem, which is a weaker version of Theorem 3.4.

Theorem 3.19. Let α > 0 and c > 0 with
∑

v∈V6≡0
ν({v}) > 4α

c · |V 6≡0|. Then, for any feasible solution C

of the instance I with w(δ(C)) 6 α, the distribution D satisfies Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
6 c/|V6≡0|.

Note that compared to Theorem 3.4, the assumption in Theorem 3.19 is stronger by a factor of 2. This
implies that the analogue of Algorithm 3.1 which contracts vertices based on the distribution D obtained in
this section can perform contraction steps only if stronger assumptions are satisfied, and thus has to fall back
on reduction or enumeration steps earlier. This leads to an increase in running time.

The proof of Theorem 3.19 is similar to the one of Theorem 3.4. There, we could exploit that by
construction, wH(F) = 1

2

∑
v∈V6≡0

ν({v}). This is no longer true in the current alternative setting, but we
can instead use the following bound.

Theorem 3.20. We have wH(F) > 1
4

∑
v∈V 6≡0

ν({v}) .

This indeed implies Theorem 3.19 immediately.

Proof of Theorem 3.19. If C is a solution of I with w(δ(C)) 6 α, then by the choice of D,

Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
=
wH(δH(C ∩ V 6≡0))

wH(F)
6

4 · w(δG(C))∑
v∈V6≡0

ν({v})
6

c

|V6≡0|
,

where the first inequality is due to Theorem 3.18 (ii) and Theorem 3.20, and the second one follows from
w(δG(C)) 6 α and the assumption that

∑
v∈V6≡0

ν({v}) > 4α
c · |V 6≡0|.

It thus remains to show Theorem 3.20. To this end, we use the notion of a Gomory-Hu tree [GH61] (see
also [KV18; Sch03] for two excellent exhibitions of the topic). More precisely, we consider a Gomory-Hu
tree T = (V 6≡0, L) for V 6≡0 inG. This is a spanning tree over V 6≡0, where the edges L ⊆

(V6≡0
2

)
of the spanning

tree are not necessarily edges of G. Moreover, the edges L of T have weights wT : L→ R>0, such that

wT ({s, t}) = µG,w(s, t) = ν(Cs,t) ∀{s, t} ∈ L , (3.8)

where Cs,t ⊆ V 6≡0 are all vertices of the graph (V6≡0, L \ {s, t}) in the connected component that contains
s.10 To prove Theorem 3.20, the next two lemmas relate both the wH-weight of F and the values ν({v}),
respectively, to weights on the Gomory-Hu tree T , which then allows us to compare them.

Lemma 3.21. For all v ∈ V 6≡0, we have ν({v}) 6 wT (δT (v)) .
9Frank shows how to get (i). However, (ii) is immediate from the fact that Frank’s algorithm performs classical splitting-off

operations. More precisely, the method repeatedly considers a pair of edges {w, v}, {w, u} sharing one endpoint w, and reduces
their weights by some ε > 0, while increasing the weight of {v, u} by ε (if needed, a new edge {v, u} is introduced). Clearly, this
way of modifying weights will never increase the value of any cut.

10A more classical notion of Gomory-Hu trees considers a spanning tree over all vertices of G. However, the generalized version
we need, with a tree only over a subset of the vertices, can be readily derived from the more classical version, and often follows as a
byproduct when building classical Gomory-Hu trees (see proof of Theorem 15.14 in [Sch03] for a formal proof).

74

3.5 Weaker contraction distributions from standard splitting techniques

Proof. Let k := |δT (v)|, and let t1, . . . , tk ∈ V 6≡0 be the neighbors of v in T . The desired result holds due to

ν({v}) 6
k∑
i=1

ν(Cv,ti) =
k∑
i=1

wT ({v, ti}) = wT (δT (v)) ,

where the inequality holds because a cut in G that separates v from V 6≡0 \ {v} can be obtained by removing,
for each i ∈ [k], the minimum cut in G that separates Cv,ti from V 6≡0 \ Cv,ti ; moreover, the first equality
follows from (3.8).

Lemma 3.22. We have wT (T) 6 2wH(F) .

Proof. We start by showing that

wH(δH(v)) > wT (f) ∀f ∈ δT (v) . (3.9)

The above holds because for any f = {u, v} ∈ δT (v), we have

wT (f) = µG,w(u, v) = µH,wH (u, v) 6 wH(δH(v)) ,

where the first equality follows from (3.8), the second one from Theorem 3.18 (i), and the inequality holds
because wH(δH(v)) is the value of the singleton cut {v} in H , which is a v-u cut, and µH,wH (u, v) is the
value of the smallest v-u cut in H .

Finally, to show the lemma, we choose an arbitrary vertex r ∈ V6≡0, and direct all edges L of T = (V6≡0, L)
away from r, to obtain an r-arborescence. This arborescence can be interpreted as a bijection between L
and V 6≡0 \ {r}, where an edge f ∈ L gets assigned to the vertex in V 6≡0 to which it points to. Now for each
edge {u, v} ∈ L, we have wT (f) ≤ wH(δH(v)) by (3.9), where v is the vertex to which f points to. Hence,
by summing over all edges in T , we obtain the first inequality in the following relation, which proves the
statement:

wT (L) 6
∑

v∈V6≡0\{r}

wH(δH(v)) 6
∑
v∈V6≡0

wH(δH(v)) = 2wH(F) ,

where the equality is the classical relation that the sum of weighted degrees is equal to twice the total
weight.

With the above two statements at hand, Theorem 3.20 is a straightforward consequence.

Proof of Theorem 3.20. We have

wH(F) >
1

2
wT (T) =

1

4

∑
v∈V6≡0

wT (δT (v)) >
1

4

∑
v∈V6≡0

ν({v}) ,

where the first inequality follows from Lemma 3.22, the equality holds because the sum of weighted degrees
is twice the total weight, and the second inequality holds due to Lemma 3.21.

75

Chapter 4

A new dynamic programming approach for
spanning trees with chain constraints and beyond

4.1 Introduction

Given a graphG = (V,E) and edge costs c : E → R>0, the problem of finding a minimum cost spanning tree
(MST) in G with respect to c is one of the most classical network design problems. A variety of applications
in areas like chip design, vehicle routing, and telecommunication networks triggered interest in constrained
spanning tree problems. Moreover, such problems are regularly used as building blocks in the design of
approximation algorithms. In particular, many approaches used in recent progress on the Traveling Salesman
Problem (TSP) and its path version have a constrained spanning tree problem as a key component.

The arguably most classical example of a constrained spanning tree problem is the minimum bounded
degree spanning tree problem (MBDST). Here, the goal is to find a spanning tree T ⊆ E in G of minimum
cost subject to T satisfying a degree constraint |T ∩ δ(v)| 6 d(v) at every vertex v, where d : V → Z>0 are
given degree bounds. Already just finding a feasible solution for MBDST can easily be seen to be NP-hard,
even in the special case where d(v) = 2 for all v, as this captures the Hamiltonian path problem. This
is typical for most constrained spanning tree problems. The focus has therefore been on approximation
algorithms that allow for a slight violation of the additional constraints. This led to algorithms with various
trade-offs between cost and constraint violation. After a series of papers with progress on the approximation
guarantees (see [KR00; KR03; Goe06; CRRT09a; CRRT09b] and references therein), an essentially best
possible approximation algorithm for MBDST was given by Singh and Lau [SL07]. Using iterative relaxation,
they return a spanning tree violating each degree constraint by at most 1 unit, and of cost no more than that
of an optimal solution not violating the degree constraints. Bansal, Khandekar, and Nagarajan [BKN09]
presented an elegant generalization of this result to upper bounds on the number of edges picked in a family of
arbitrary edge sets E1, . . . , Ek ⊆ E. More precisely, they show that a spanning tree violating each constraint
by at most maxe∈E |{i ∈ [k] | e ∈ Ei}| − 1 and with cost no more than that of an optimal solution can be
found. If each edge is only contained in a constant number of constraints, this still leads to a constraint
violation by only an additive constant. Whereas iterative relaxation is undoubtedly a very strong tool to find
constrained spanning trees, it is difficult to obtain constraint violations of at most a constant (either additively
or multiplicatively) through this technique when edges can be in a super-constant number of constraints
(see [Zen12] for one rare example of this type).

However, constrained spanning tree problems appearing in the design of approximation algorithms,
especially within problems related to TSP, are often of this type. (When referring to TSP and its variants, we
always assume that the involved lengths are metric.) For example, Asadpour, Goemans, Madry, Oveis Gharan,
and Saberi [AGMOS10] established a beautiful connection between the asymmetric TSP and so-called thin
trees, which are trees with constraints on all cut sets. More precisely, if there is a constant c such that for
any k ∈ Z>0, one can efficiently find in any k-edge-connected graph G = (V,E) a spanning tree T ⊆ E

77

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

with |T ∩ δ(S)| 6 c/k · |δ(S)| for all S ⊆ V , then this can be transformed into an O(1)-approximation for
asymmetric TSP. Such trees are sometimes referred to as constantly-thin trees. The existence of a weaker
version of constantly-thin trees was conjectured by Goddyn [God04] and remains open. We highlight that
very recently, Svensson, Tarnawski, and Végh [STV18] obtained a 5500-approximation for asymmetric TSP
through different techniques, with the approximation factor later improved to 22 + ε by Traub and Vygen
[TV20]. Still, different ideas might be needed to obtain considerably smaller factors in the region of those
that are known for the symmetric version. Finding constantly-thin spanning trees may be one path to advance
on this question. Moreover, especially for Path TSP, where the task is to find a shortest Hamiltonian s-t path
in a complete graph with metric lengths, finding spanning trees with various additional constraints/properties
has been crucial in recent progress [AKS15; Seb13; Vyg16; GV16; SZ16; TV18; Zen19]. Interestingly, the
type of tree properties considered for Path TSP are often on the edges contained in a family of s-t cuts that
form a chain.1 More generally, the shortest connected T -join problem, which generalizes both Path TSP and
classical TSP, naturally leads to a laminar family of cuts to be considered [CFG15].2 The appearance of
cut families with laminar or chain structure in this context stems from the use of combinatorial uncrossing
arguments, which are ubiquitous in the context of TSP, and is thus not surprising. Clearly, when constraints
are imposed on the edges in a family of cuts that are laminar, or even just a chain, then edges can appear in a
large number of constraints.

The arguably most canonical constrained spanning tree problem with constraints on a laminar family
of cuts is when there are upper bounds on the number of edges in each cut. This setting was considered
by Bansal, Khandekar, Könemann, Nagarajan, and Peis [BKKNP13], who designed an iterative relaxation
approach for returning a spanning tree violating each constraint by at most O(log |V |) units and being of
cost no more than the cost of an optimal solution not violating the constraints. As later shown by Olver and
Zenklusen [OZ18], this is almost optimal because an additive violation of c log |V |/log log |V | units, for some
constant c, cannot be achieved unless P = NP. It remains open whether O(1)-multiplicative violations are
possible.

In summary, constrained spanning tree problems where edges can appear in a large number of constraints
are still badly understood, and new approaches and techniques are needed.

The goal of this chapter is to introduce a versatile dynamic programming type approach to deal with a
variety of constraint types on laminar cut families of small width, with applications to chain-constrained
spanning trees, Path TSP and beyond. Dynamic programming did not play a crucial role in the above-
mentioned problems until a very recent breakthrough result by Traub and Vygen [TV18] in the context
of Path TSP, which inspired this work. A key new technical ingredient in our approach is to introduce a
generalized form of dynamic programming, where the value of a table entry does not only depend on the
values of previous table entries, as it is usually the case, but also on a fixed representative solution saved
together with each table entry. This leads to the peculiar situation that it is hard to define upfront the solution
set over which our dynamic program optimizes. However, we can show that it optimizes over a relaxation of
the problems we are interested in, and returns solutions with well-defined properties to be exploited later on,
which is all we need. For chain-constrained problems, our dynamic program can be leveraged to return a
fractional point in the spanning tree polytope, which can then be rounded to an actual spanning tree. We
show that good spanning trees can be obtained by using negatively correlated rounding procedures together
with an alteration procedure that may be of independent interest, and which we therefore present in a more
general context.

1Throughout this chapter, a cut of a vertex set V is a nonempty set S (V . An edge e lies in a cut S if e ∈ δ(S).
2For some even cardinality vertex set T ⊆ V in a graph G = (V,E), a T -join is an edge set U ⊆ E such that the vertices of

odd degree in the subgraph (V,U) are precisely T . Moreover, in the shortest connected T -join problem, one is allowed to choose as
U a multiset of edges in E.

78

4.1 Introduction

4.1.1 Our results

Here, we provide a summary of the results that we obtain by combining our dynamic programming approach
with various other techniques. We start with a natural special case of laminarly constrained spanning trees
that has been studied previously, namely the minimum chain-constrained spanning tree problem (MCCST),
where upper bounds are imposed on the number of edges that can be chosen in a family of cuts that form
a chain. Opposed to previous results, we also allow for lower bounds on the number of edges in the cuts,
which can be handled with our methods without additional complications.

Minimum Chain-Constrained Spanning Tree Problem (MCCST): Let G = (V,E) be a graph with
edge costs c : E → R>0, and let ∅ (S1 (S2 (. . . (Sk (V and a1, . . . , ak, b1, . . . , bk ∈ Z>0. Find
a spanning tree T ⊆ E minimizing c(T) :=

∑
e∈T c(e) among all trees satisfying

ai 6 |T ∩ δ(Si)| 6 bi for all i ∈ [k] := {1, . . . , k}.

For α, β > 1, we say that an algorithm returning a spanning tree T is an (α, β)-approximation for MCCST, if
1
β ·ai 6 |T∩δ(Si)| 6 β ·bi for all i ∈ [k], and c(T) 6 α·c(OPT), where OPT is a spanning tree of minimum
cost among all spanning trees not violating the chain constraints. For MCCST without lower bounds, i.e.,
a1 = . . . = ak = 0, Linhares and Swamy [LS16] recently presented an efficient (λ

λ−1 , 9λ)-approximation
for any λ > 1 by extending a prior approach of Olver and Zenklusen [OZ18] that did not handle costs. Our
main result is a quasi-polynomial algorithm for MCCST (with lower bounds) with essentially best possible
guarantees.

Theorem 4.1. For every ε > 0, there is a randomized (1, 1 + ε)-approximation algorithm for MCCST with
running time |V |O(log |V |/ε2).

The approximation guarantee is essentially best possible in the sense that finding a tree that fulfills all chain
constraints is NP-hard as shown in [OZ18]. Our randomized algorithm returns a (1, 1 + ε)-approximation
with high probability, and can also be transformed into a Las Vegas algorithm. Moreover, Theorem 4.1
gives hopes that such best possible guarantees may be achievable with an efficient procedure. We prove the
theorem through a combination of our new dynamic programming approach, which we will introduce in this
context, together with negatively correlated rounding and an alteration step to improve the value of the final
solution. As we discuss in Section 4.4, in this context, the alteration step we use could also be replaced by a
technique introduced by Linhares and Swamy [LS16].

It turns out that with some modifications, the technical insights outlined above are enough to push our
results beyond pure chain constraints towards the more general problem of minimum laminarly constrained
spanning trees (MLCST), which is defined as follows.

Minimum Laminarly Constrained Spanning Tree Problem (MLCST): Let G = (V,E) be a graph
with edge costs c : E → R>0, let L ⊆ 2V \ {∅, V } be a laminar family, and aS , bS ∈ Z>0 for S ∈ L.
Find a spanning tree T ⊆ E minimizing c(T) :=

∑
e∈T c(e) among all trees satisfying

aS 6 |T ∩ δ(S)| 6 bS for all S ∈ L.

Note that if L contains precisely all singletons, then the above problem setting reduces to the minimum
bounded degree spanning tree problem (MBDST) mentioned in the introduction. From a structural point
of view, constraint types in the special cases MCCST and MBDST are “orthogonal” in the sense that the
role of L is taken by a chain in one case and by an antichain in the other. Currently, there is no efficient
approach covering both cases. For a step towards MLCST using our dynamic programming framework, we
parametrize laminar families by their width, which is the smallest integer k such that the laminar family does
not contain any k + 1 disjoint sets. Using this notion, we can generalize Theorem 4.1 to obtain the following
result.

79

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Theorem 4.2. For every ε > 0, there is a randomized (1, 1 + ε)-approximation algorithm for MLCST with
running time |V |O(k log |V |/ε2), where k is the width of the laminar family L.

Observe that the running time in the above result depends exponentially on the width of the laminar family.
For width k up to the order O(log |V |), we thus still achieve quasi-polynomial running time. Unfortunately,
the exponential dependence on k seems to be intrinsic to our approach, and most likely, new ideas are required
to overcome this.

Our dynamic programming approach is very versatile in terms of constraint types that can be handled. To
highlight this fact, we show how it can be employed to replicate a recent result of Traub and Vygen [TV18]
in the context of Path TSP.

Shortest Hamiltonian s-t Path Problem (Path TSP): Let G = (V,E) be a complete graph with
metric edge lengths ` : E → R>0, and let s, t ∈ V be two distinct vertices. Find a path P ⊆ E
minimizing `(P) :=

∑
e∈P `(e) among all Hamiltonian s-t paths in G.

Leveraging our dynamic programming ideas, we obtain the following theorem.

Theorem 4.3. For every ε > 0, there is a (1.5 + ε)-approximation algorithm for Path TSP with running time
|V |O(1/ε).

The above result matches the algorithm by Traub and Vygen [TV18] in terms of approximation ratios, but
provides a weaker running time guarantee, as Traub and Vygen are able to achieve an exponential dependence
on log(1/ε). Our approach, on the other hand, avoids recursive calls to a dynamic program as used in [TV18].
Both results almost match the currently best known approximation guarantee that is just below 1.5 and can
be obtained by combining the result of Karlin, Klein, and Gharan [KKG21], who provide an approximation
factor of 3/2− δ for some δ > 10−36 for TSP, and the result of Traub, Vygen, and Zenklusen [TVZ20] that
reduces Path TSP to TSP at an arbitrarily small loss in the approximation factor. While being rather involved,
this result shows that the approximation factor of 1.5 (which was achieved with a very neat approach by
Zenklusen [Zen19]) can be surpassed.

To obtain Theorem 4.3, our dynamic programming approach can be used to obtain a good spanning tree T
for a Christofides-type algorithm, which starts with a spanning tree T and does parity correction in a second
step by adding further edges. As observed by An, Kleinberg, and Shmoys [AKS15], it turns out that when
following Wolsey’s analysis [Wol80] of Christofides algorithm, then the number of edges of T in a chain
of cuts crucially impacts the approximation guarantee. This naturally leads to a constrained spanning tree
problem for finding T . As for MCCST, the constraints appearing in this problem are on a chain of cuts.
However, they are not simply upper and lower bounds—ideally, we would like to impose parity constraints,
requiring that each cut is crossed by an odd number of edges. Unfortunately, this leads to NP-hard problems,
and we thus use a proxy for parity constraints that is good enough for finding short s-t paths. Again, we
hope that this way of dealing with parity constraints, which naturally appear in the context of TSP, may find
broader applications.

While techniques from MCCST have implications in Path TSP, their generalization to MLCST can be
used in the following generalization of Path TSP.

Metric Shortest Connected T -Join Problem (MSCTJ): Let G = (V,E) be a complete graph with
metric edge lengths ` : E → R>0, and let T ⊆ V be nonempty with |T | even. Find a T -join J ⊆ E
minimizing `(J) :=

∑
e∈J `(e) among all T -joins J such that (V, J) is connected.

Contrary to Path TSP, here we obtain a constrained spanning tree problem with constraints not only on a
chain of cuts, but on a laminar family of width at most |T | − 1. These can be handled similarly as in MLCST,
giving the following result.

80

4.2 Overview of our approach for MCCST

Theorem 4.4. For every ε > 0, there is a (1.5+ε)-approximation algorithm for the metric shortest connected
T -join problem with running time |V |O(|T |/ε).

We remark that both the algorithms by Traub and Vygen [TV18] and Zenklusen [Zen19] can be generalized
to MSCTJ in a similar way. Hence, for constant |T | > 4, all three approaches imply an efficient method
improving on the previously best 1.6-approximation by Sebő [Seb13], with the generalization of the approach
of Zenklusen giving the currently best known guarantee of 1.5. Nevertheless, we expand on our approach
here in order to highlight another immediate implication of our new techniques.

4.1.2 Organization of the chapter

We start by introducing our techniques in the context of MCCST. Section 4.2 clearly outlines what we want
to achieve with our dynamic program, and why this implies Theorem 4.1 together with negatively correlated
rounding procedures and the solution alteration technique mentioned ealier. Section 4.3 then provides
a thorough discussion of the key aspects of our dynamic programming technique. Section 4.4 contains
additional details on the local alteration approach that we use to obtain a unicriteria approximation for
MCCST, and shows a further application of this technique to turn bicriteria approximations into unicriteria
ones. In Section 4.5, we discuss in detail why the natural generalization of our techniques to laminar
constraint families fails, and how these difficulties can be overcome to obtain results for MLCST and a
proof of Theorem 4.2. Section 4.6 presents some implications of our new technique in Path TSP and its
generalization, the MSCTJ problem, leading to Theorems 4.3 and 4.4. Section 4.A discusses why, for
MCCST, the natural LP relaxation is not strong enough to obtain results with guarantees as in Theorem 4.1,
thus further motivating the use of a dynamic programming approach to strengthen the relaxation. Finally,
Section 4.B presents an example showing that a classical analysis of our DP, namely by backtracing an
optimal solution, is impossible in the laminarly constrained setting.

4.2 Overview of our approach for MCCST

The first step of our approach for MCCST relies on finding a solution to a suitable polyhedral relaxation.
The canonical relaxation, which was also used in prior results on chain-constrained trees [LS16; OZ18],
enhances the spanning tree polytope PST with the cut constraints. We recall that PST is the convex hull of all
characteristic vectors of spanning trees in G = (V,E), and, by a seminal result of Edmonds [Edm71], can be
described by

PST :=

{
x ∈ RE>0

∣∣∣∣∣ x(E) = |V | − 1

x(E[S]) 6 |S| − 1 ∀S (V, |S| > 2

}
,

where E[S] ⊆ E are all edges with both endpoints in S. The polytope Q ⊆ RE below describes the natural
relaxation of MCCST:

Q := {x ∈ PST | ai 6 x(δ(Si)) 6 bi ∀i ∈ [k]} .

Unfortunately, solutions to the relaxation min{c>x | x ∈ Q} are too weak for our purposes. In particular,
there are instances where there exists a solution y ∈ Q fulfilling the chain-constraints, even though any
spanning tree must violate at least one chain constraint by a factor of at least 2. (We provide such an example
in Section 4.A.) Hence, when comparing any integral solution to y, it will be impossible to stay within a
factor of 1 + ε regarding the violation of constraints—but this is precisely what we want to achieve. This
also shows a hard limit for prior approaches, which are all based on Q.

We therefore aim for a stronger relaxation. It turns out that the reason why Q can be a bad relaxation is
the potential existence of small bounds ai, bi. Indeed, assume that all ai, bi for i ∈ [k] were at least c · log k
for a sufficiently large constant c (depending on ε). Then one could first find an optimal solution x∗ to
min{c>x | x ∈ Q}, and then round x∗ to a spanning tree by using one of several negatively correlated

81

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

rounding procedure developed within the last 10 years (see [AGMOS10; CVZ10]), which lead to Chernoff-
type concentration bounds. The theorem below summarizes a simplified form of the properties obtained by
those procedures.3

Theorem 4.5 (see [AGMOS10; CVZ10]). Let y ∈ PST. There exists an efficient randomized rounding
scheme for rounding y to a random spanning tree T in G such that:

(i) Pr[e ∈ T] = ye for all e ∈ E, and
(ii) For any λ > 0 and U ⊆ E, we have

Pr
[
(1− λ)y(U) 6 |T ∩ U | 6 (1 + λ)y(U)

]
> 1− 2e−

y(U)λ2/3 .

Consider applying Theorem 4.5 to x∗ to obtain a spanning tree T . By choosing U = δ(Si) in the above
theorem for any i ∈ [k], one obtains that |T ∩ δ(Si)| is within a (1± ε)-factor of x∗(δ(Si)) with probability
1 − kΩ(1) if x∗(δ(Si)) > c · log k. Moreover, x∗ ∈ Q implies ai 6 x∗(δ(Si)) 6 bi for i ∈ [k]. Hence, a
union bound over all chain constraints shows that T is unlikely to violate any chain constraint by a large
factor.

Motivated by this observation, we design a dynamic programming approach to find points y ∈ Q of small
cost that, for each i ∈ [k], are either integral on the edges δ(Si), or have a large value y(δ(Si)). To formalize
this idea, we introduce the notion of τ -integral solutions.

Definition 4.6 (τ -integral). For τ ∈ Z>0, we say that a point y ∈ RE is τ -integral (with respect to the cuts
S1, . . . , Sk), if for each i ∈ [k], either

(i) y(δ(Si)) 6 τ and y is integral on the edges in δ(Si), or
(ii) y(δ(Si)) > τ + 1.

We call the cuts Si satisfying (i) and (ii), respectively, the y-small and y-large cuts.

Clearly, any integral point is τ -integral for any τ ∈ Z>0. The key implication of our dynamic programming
approach in the context of MCCST is the following.

Theorem 4.7. For any τ ∈ Z>0, there is an algorithm that returns in |V |O(τ) time a τ -integral point y ∈ Q
with c>y 6 c(OPT), where OPT is an optimal solution to MCCST.

Not surprisingly, to obtain Theorem 4.7 we want our dynamic program to guess edges in the cuts that
will later be y-small. However, this simple high-level plan comes with some important technical hurdles. In
particular, even if we knew the edges used in some cut δ(Si), completing the two parts of the spanning tree
on the left-hand side of the cut (on the vertices Si) and on its right-hand side (on V \Si), respectively, are two
highly dependent subprobems. Interestingly, it is not easy to separate them into independent ones by guessing
further structure, like the connectedness on each side, without creating NP-hard subproblems. We expand
on these, and further issues, in Section 4.3, and show how one can address them. A key difference between
classical dynamic programs and our approach is that our propagation step requires a fractional solution of a
previous subproblem, and not just a small fingerprint of previously obtained solutions.

The issue of small cuts is now resolved by Theorem 4.7 by setting τ = Θ(k) and rounding a τ -integral
point y ∈ Q using a randomized rounding procedure with the guarantees stated in Theorem 4.5: Because y is
integral on y-small cuts, the rounding procedure will return a tree T such that χT coincides with y on all
y-small cuts, because it is marginal-preserving (property (i) in Theorem 4.5).

One last technical hurdle to overcome to obtain a (1, 1+ε)-approximation for MCCST is that the properties
of a negatively correlated rounding procedure, as stated in Theorem 4.5, are not enough to get a spanning tree
that both (i) violates chain constraints at most slightly, and (ii) has cost no more than c>y. Indeed, typical
applications of such rounding procedures only lead to (1 + ε)-approximations in terms of the objective

3More generally, randomized rounding procedures with these properties can be obtained for any matroid base polytope and
Chernoff-type concentration holds for any linear function with small non-negative coefficients (see [CVZ10]).

82

4.2 Overview of our approach for MCCST

(see [CVZ10; CVZ09] for examples). We show that this loss in the objective is avoidable in MCCST, and
other settings, by using a simple alteration step that modifies the obtained spanning tree by swapping one
edge.

Theorem 4.8. Let y ∈ PST and c ∈ RE . Let T be a random spanning tree in G = (V,E) drawn from a
distribution satisfying Pr[e ∈ T] = y(e) for all e ∈ E. Let T be a spanning tree minimizing c(U) among all
spanning trees U whose symmetric difference U 4 T := (U \ T) ∪ (T \ U) with T satisfies |U 4 T | 6 2
and such that y(e) ∈ (0, 1) for e ∈ U 4 T . Then

Pr
[
c(T) 6 c>y

]
> (|V | − 1)−1 .

In Section 4.4, we show that Theorem 4.8 holds even in a much more general context and has implications
outside MCCST. For the specific setting of MCCST, we observe in Section 4.4 that also a method introduced
by Linhares and Swamy [LS16] can be adapted to avoid the (1 + ε)-factor loss in the objective.

We can now put together the above ingredients to obtain our quasi-polynomial (1, 1 + ε)-approximation
for MCCST, stated as Algorithm 4.1 below.

Algorithm 4.1: Quasi-polynomial (1, 1 + ε)-approximation for MCCST

1. Let τ := b96 log(2|V |)/ε2c, and use Theorem 4.7 to find a τ -integral point y ∈ Q with c>y 6 c(OPT).

2. Let ` := d2|V | log |V |e, and randomly round y with a rounding procedure as guaranteed by
Theorem 4.5, ` times independently, to obtain spanning trees T1, . . . , T`.

3. For each j ∈ [`], find a minimum cost spanning tree T j among all spanning trees T with
|T 4 Tj | 6 2 and such that y(e) ∈ (0, 1) for all e ∈ T 4 Tj .

4. Among all T j for j ∈ [`] with ai
1+ε 6 |T j ∩ δ(Si)| 6 (1 + ε)bi for all i ∈ [k], return one of smallest

cost.

We now show that the above results—in particular Theorem 4.7, which follows from our dynamic program,
and Theorem 4.8—imply that Algorithm 4.1 is a quasi-polynomial (1, 1 + ε)-approximation for MCCST.

Proof of Theorem 4.1. We will show that with probability at least 1 − 1/|V |, there is one spanning tree T j
among the trees T 1, . . . , T ` computed by Algorithm 4.1 that satisfies both

(i) 1
1+ε · y(δ(Si)) 6 |T j ∩ δ(Si)| 6 (1 + ε) · y(δ(Si)) for all i ∈ [k], and

(ii) c(T j) 6 c>y,
which indeed implies that the returned solution is (1, 1 + ε)-approximate because ai 6 y(δ(Si)) 6 bi for all
i ∈ [k] due to y ∈ Q, and y satisfies c>y 6 c(OPT) as guaranteed by step 1 of the algorithm.

We first analyze a single random spanning tree among the spanning trees T1, . . . , T` determined in step 2
of the algorithm. We denote by T such a spanning tree that was obtained by randomly rounding y with
a randomized rounding procedure as guaranteed by Theorem 4.5. Observe that because the rounding is
marginal-preserving, χT coincides with y on any edge e ∈ E with y(e) ∈ {0, 1}. As y is τ -integral, all
edges within y-small cuts are of this type and T thus fulfills all chain constraints corresponding to y-small
cuts. Together with Chernoff-type concentration bounds guaranteed by Theorem 4.5, applied with λ = ε/4
and using y(δ(Si)) > τ + 1 for y-large cuts, we have

Pr
[(

1− ε

4

)
y(δ(Si)) 6 |T ∩ δ(Si)| 6

(
1 +

ε

4

)
y(δ(Si))

]
> 1− 1

2|V |2
∀i ∈ [k] .

Now let T be a spanning tree of minimum cost among all spanning trees U ⊆ E with |U 4 T | 6 2 and
y(e) ∈ (0, 1) for e ∈ U 4 T . The cost of this spanning tree has the same distribution as the cost of the
spanning trees T 1, . . . , T ` computed in step 3 of Algorithm 4.1. By Theorem 4.8, we have

Pr
[
c(T) 6 c>y

]
>

1

|V | − 1
.

83

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Using a union bound over the k events described in (4.2) and the one described in (4.2), we obtain that T and
T simultaneously fulfill

(a)
(
1− ε

4

)
y(δ(Si)) 6 |T ∩ δ(Si)| 6

(
1 + ε

4

)
y(δ(Si)) for all i ∈ [k], and

(b) c(T) 6 c>y,

with probability at least

1−
(
k · 1

2|V |2
+

(
1− 1

|V | − 1

))
>

1

2|V |
,

where we used k 6 |V | in the above inequality. Next, we show that property (a) above implies(
1− ε

2

)
y(δ(Si)) 6 |T ∩ δ(Si)| 6

(
1 +

ε

2

)
y(δ(Si)) ∀i ∈ [k] ,

which in turn implies 1
1+ε ·y(δ(Si)) 6 |T ∩ δ(Si)| 6 (1 + ε) ·y(δ(Si)) for all i ∈ [k], providing the property

that we seek as highlighted in (4.2). To see that (4.2) holds for any i ∈ [k] that corresponds to a y-small cut,
notice that for such i we have T ∩ δ(Si) = T ∩ δ(Si), as T and T only differ on edges on which y has a
fractional value, and, due to τ -integraliy of y, small cuts do not contain such edges. Hence, consider i ∈ [k]
with y(δ(Si)) > τ + 1. Because |T 4 T | ≤ 2, T is either the same as T or obtained from T by replacing
one edge by a different one, so

|T ∩ δ(Si)| − 1 6 |T ∩ δ(Si)| 6 |T ∩ δ(Si)|+ 1 .

The relation (4.2) for y-large cuts now follows from the above inequality and (a):

|T ∩ δ(Si)| >
(

1− ε

4

)
· y(δ(Si))− 1 >

(
1− ε

2

)
· y(δ(Si)) , and

|T ∩ δ(Si)| 6
(

1 +
ε

4

)
· y(δ(Si)) + 1 6

(
1 +

ε

2

)
· y(δ(Si)) ,

where the second inequality in each of the two above lines follows from y(δ(Si)) > τ + 1 > 96 log(2|V |)/ε2,
because Si is y-large.

In summary, the tree T satisfies the two desired properties highlighted in (4.2) with probability at least
(2|V |)−1. Because the algorithm computes ` = d2|V | log |V |e independent random trees T 1, . . . , T j with
the same distribution as T , the probability that at least one of them fulfills the properties highlighted in (4.2)
is at least

1−
(

1− 1

2|V |

)`
> 1− e−

`
2|V | > 1− 1

|V |
,

as desired. Finally, the running time is dominated by the quasi-polynomial time dynamic programming
approach used to find a cheap τ -integral point y ∈ Q in step 1 of Algorithm 4.1. (All other steps of the
algorithm can be performed efficiently.) By Theorem 4.7, we thus get a running time bound |V |O(τ) =
|V |O(log |V |/ε2).

4.3 The dynamic programming approach for MCCST

First observe that to prove Theorem 4.7, it suffices to consider τ 6 |V | − 1, because any τ -integral point in
y ∈ Q for τ > |V | − 1 is integral as Q ⊆ PST, and the y-value on any cut is at most |V | − 1 for any point in
PST. Thus, any τ > |V | can be replaced by τ = |V | − 1, so we assume τ 6 |V | − 1 in what follows.

Our dynamic program to find a cheap τ -integral point in Q is inspired by recent dynamic programming
approaches in the context of Path TSP [TV18; Zen19], but faces important new technical challenges that
require novel conceptual insights. To highlight this point, let us first consider the significantly simpler special
case of τ = 1. The dynamic programming approaches for Path TSP are essentially algorithms for this case.4

4More precisely, dynamic programs for Path TSP are looking for points in the Held-Karp relaxation of Path TSP instead of the
spanning tree polytope, but this is only a minor technical difference without significant impact on the dynamic program.

84

4.3 The dynamic programming approach for MCCST

4.3.1 Brief overview to find cheap 1-integral solution following prior techniques

To gain intuition for this special case, which nicely allows for showcasing later on the added difficulty faced
for general τ , assume that we knew upfront the small cuts with respect to an optimal solution OPT ⊆ E, i.e.,
the cuts among S1, . . . , Sk in which OPT contains a single edge. Let Si1 , . . . , Si` for 1 6 i1 < . . . < i` 6 k
be these small cuts. For notational convenience, we set Si0 := ∅ and Si`+1

:= V . Now consider the ` + 1

induced subgraphs G[Si1], G[Si2 \ Si1],. . . , G[Si` \ Si`−1
], G[V \ Si`].5 It is not hard to observe that the

edges of OPT within each of these subgraphs must form a spanning tree in that subgraph. Moreover, for
j ∈ [`], the single edge ej ∈ OPT∩ δ(Sij) must go from Sij \Sij−1

to Sij+1
\Sij for OPT to be a spanning

tree (see Fig. 4.1a). If, moreover, we even knew the single edge ej ∈ δ(Sij)∩OPT for each j ∈ [`], then the
problem of finding a corresponding cheapest 1-integral point y ∈ PST—i.e., with y-small cuts Si1 , . . . , Si`
and edges e1, . . . , e` contained in them—decomposes into `+1 independent linear programs, one within each
of the above-mentioned induced subgraphs. More precisely, one has to find, for j ∈ [`+ 1], a cheapest point
yj in the spanning tree polytope of G[Sij \ Sij−1

] with lower bounds on each cut Si with Sij (Si (Sij−1

to make sure that yj , together with the guessed edges in small cuts, has a load of at least 2 on these cuts.
The above observations now naturally lead to a dynamic programming approach that extends solutions

from left to right, i.e., a 1-integral solution in some subgraph G[Si] for some i is extended to one on G[Sj]
for j > i. This way, one can use a dynamic program to optimize over all possibilities of small cuts and edges
contained in them (see [TV18; Zen19] for more details of this approach in the context of Path TSP).

S1 S2 S3 S4 S5

(a) Independent problems.

Si

(b) Dependent problems.

Figure 4.1: (a) Here, the small cuts are Si
1

= S2 and Si
2

= S4, and we assume that only a single edge, drawn
in thick and blue, crosses each small cut. Finding a τ -integral point y ∈ PST boils down to solving independent
subproblems in G[S2], G[S4 \ S2], and G[V \ S4]. (b) Because more than one edge is in the small cut Si, the
problem does not decompose into independent subproblems on the left-hand side and right-hand side of Si.

4.3.2 Toward general τ with connectivity patterns and resulting challenges

However, if τ > 2, i.e., if there are two or more edges in small cuts, splitting the problem into independent
ones along small cuts comes with significant additional challenges linked to obtaining connectivity and
acyclicity globally from independent solutions of the subproblems (see Fig. 4.1b). One natural approach to
try to address such challenges is to maintain more structure in the dynamic program, by for example also
enumerating over potential connectivity patterns of edges in small cuts, i.e., ways of how the edges in a small
cut could be connected on one or either side of the cut. For ease of presentation, consider a situation with
a single small cut Si, and a given selection of t 6 τ many edges F := {{uj , vj} | j ∈ [t]} ⊆ δ(Si) with
uj ∈ Si and vj /∈ Si for all j ∈ [t]. A connectivity pattern for the right-hand side of the cut is a partition C of
{v1, . . . , vt}, where a set C ∈ C indicates that the vertices in C shall be connected in G[V \ Si] . We call the
triple (Si, F, C) a connectivity triple (see Fig. 4.2).

5For W ⊆ V , G[W] is the subgraph of G induced by W .

85

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

u1 v1

u2
v2

u3 =u4
v3

v4u5

u6

v5 =v6

C1

C2

C3

Si

F

Figure 4.2: A connectivity triple (Si, F, C) with connectivity pattern C = {C1, C2, C3}.

Definition 4.9 (Compatibility with a connectivity triple).
(i) A spanning tree T ⊆ E is compatible with the connectivity triple (Si, F, C) if T ∩ δ(Si) = F and the

partition on {v1, . . . , vt} induced by the connected components of T ∩ E[V \ Si] equals C.
(ii) A set R ⊆

(
V \Si

2

)
is right-compatible with (Si, F, C) if R is a forest and the partition on {v1, . . . , vt}

induced by the connected components of R equals C.
(iii) Let U ⊆ E[Si], and let R ⊆

(
V \Si

2

)
be right-compatible with (Si, F, C). Then U is left-compatible

with (Si, F, C) if U ∪ F ∪R is a spanning tree.
(iv) Let x ∈ RE with supp(x) ⊆ E[Si], and let R ⊆

(
V \Si

2

)
be right-compatible with (Si, F, C). Then x is

left-compatible with (Si, F, C) if x+ χF + χR is in the spanning tree polytope of (V,E ∪R).

We highlight that right-compatible sets R are not required to be a subset of the edges of G, but can contain
any pairs of vertices within V \Si. This makes sure that right-compatible sets exist for any connectivity triple,
which simplifies the exposition. Moreover, one can observe that the above definitions of left-compatibility do
not depend on which right-compatible set R is chosen, and are thus well-defined.

Knowing the correct connectivity triple, the desired separation into independent subproblems can actually
be achieved. However, this comes at the cost that the subproblem on the side where we guessed the
connectivity pattern becomes substantially harder than in the simple case τ = 1. This is nicely highlighted
by a simple connectivity pattern C: Assume that all right endpoints {v1, . . . , vt} of F are distinct, t is even,
and let C = {{v1, v2}, {v3, v4}, . . . , {vt−1, vt}} be a grouping of the endpoints into pairs. To pinpoint the
difficulties, consider the question of whether there exists a right-compatible edge set U ⊆ E[V \ Si]. For
this to be the case, U must be a forest with t/2 components, one for each pair vj , vj+1 that connects that pair.
Such a set U exists if and only if there are t vertex-disjoint paths in G[V \ Si], one between vj and vj+1

for each j ∈ {1, 3, . . . , t− 1}. Hence, just determining whether there exists a right-compatible solution is
at least as difficult as the vertex-disjoint paths problem. Though this problem is efficiently solvable for a
constant number of paths t/2, due to the seminal results by Robertson and Seymour in the context of the
Graph Minor Project (see also [KKR12] for a faster procedure), the known techniques for disjoint paths are
highly non-trivial, non-polyhedral, cannot handle costs, and, last but not least, the connectivity pattern C
leading to the disjoint paths problem remains a very special case of connectivity patterns we have to deal
with.

4.3.3 Efficiently extending subsolutions through relaxed connectivity requirements

To overcome this issue in our approach, we still enumerate over connectivity triples with connectivity patterns
on the right-hand side of small cuts as described above, but will later not require that right-hand side solutions
are right-compatible with it; they only have to properly complete an existing left-hand side solution. The
left-hand side solutions, however, will be left-compatible with the guessed connectivity triples.

We start by observing a simple way to describe left-compatibility. Let (Si, F, C) be a connectivity triple.
Then, left-compatible edge sets U ⊆ E[Si] are simply spanning trees in an auxiliary graph G(Si, F, C)

86

4.3 The dynamic programming approach for MCCST

which we obtain from G[Si] through the following operations: (i) add the edges F and their endpoints to
G[Si], (ii) contract the vertex sets in C, and (iii) contract the edges in F . There is a canonical one-to-one
relation between the edges in G(Si, F, C) and E[Si], and we therefore treat them as the same edge set. By
PST(Si, F, C), we denote the spanning tree polytope of G(Si, F, C). Hence, PST(Si, F, C) are all points that
are left-compatible with (Si, F, C).

We are now ready to describe our dynamic programming approach. For ease of notation, we set S0 := ∅
and Sk+1 := V . Consider the set K of all connectivity triples (Si, F, C), where i ∈ {0, . . . , k + 1} and the
crossing edges F ⊆ δ(Si) satisfy ai 6 |F | 6 min{τ, bi}. For each (Si, F, C) ∈ K we determine via our
dynamic program a point (partial solution) y(Si,F,C) ∈ RE[Si] with the following property.

Property 4.10.
(i) y(Si,F,C) ∈ PST(Si, F, C).

(ii) y(Si,F,C) + χF is τ -integral on S1, . . . , Si−1.
(iii) ah 6 y(Si,F,C)(δ(Sh)) + |F ∩ δ(Sh)| 6 bh for all h ∈ [i− 1].
(iv) c>y(Si,F,C) is at most the cost of a cheapest edge set U ⊆ E[Si] such that χU fulfills (i), (ii), and (iii).

For simplicity of notation, we consider all vectors defined on some subset U ⊆ E of the edges, like
y(Si,F,C) above, to be vectors in RE , where all entries on which the vector was not defined are set to 0.6

Clearly, if we can obtain such points in |V |O(τ) time, then we are done because y := y(V,∅,{∅}) is in Q because
of (i) and (iii); y is a τ -integral point due to (ii); and y satisfies c>y 6 c(OPT) due to (iv), as desired.

To construct the vectors y(Si,F,C), we initialize y(S0,∅,{∅}) to the zero vector, and consider triples (Si, F, C) ∈
K in increasing order of i. Let i ∈ [k + 1], let (Si, F , C) ∈ K, and assume that for each (Sj , F, C) ∈ K
with j < i, we already computed a vector y(Sj ,F,C) satisfying Property 4.10. To compute a vector y(Si,F ,C)
satisfying Property 4.10, we consider all (Sj , F, C) ∈ K with j < i and for each such triple, we solve
the following linear program, which finds a cheapest extension z of y(Sj ,F,C) that is left-compatible with
(Si, F , C):

min c>z

z ∈ PST(Si, F , C)
max{τ + 1, ah} 6 z(δ(Sh)) + |F ∩ δ(Sh)| 6 bh ∀h ∈ {j + 1, . . . , i− 1}

z(e) = y(Sj ,F,C)(e) ∀e ∈ E[Sj]

z(e) = 1 ∀e ∈ F
z(e) = 0 ∀e ∈ δ(Sj) \ F .

(exLP)

Among all linear programs of type (exLP), i.e., one for each triple (Sj , F, C) with j < i, we determine the
one achieving the smallest optimal value and set y(Sj ,F ,C) to be an optimal solution of that linear program.7

This finishes the description of our dynamic program. The bottleneck of the running time is the repeated
solving of linear programs of type (exLP). A simple bound on the number of such LPs that we solve is |K|2,
and the running time of |V |O(τ) then follows from the following bound and the fact that we can solve (exLP)
in strongly polynomial time through standard techniques. A more formal treatment, including a proof of the
simple statement below, is given in Section 4.3.4.

Proposition 4.11. |K| = |V |O(τ).

We now highlight a few key aspects of our dynamic program. First, even though (exLP) seeks to complete a
prior solution y(Sj ,F,C) to one for the triple (Si, F , C), we do not require the completion to be right-compatible

6This makes sure that expressions like c>y(S
i
,F,C) or y(S

i
,F,C)(δ(Sh)) are well-defined.

7We use the usual convention that if some linear program (exLP) is infeasible, then its objective value is interpreted as∞ (and
we will never use a solution to an infeasible linear program later on). Infeasibility occurs, for example, for choices of (Sj , F, C)
where F does not contain all edges of F ∩ δ(Sj).

87

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

with (Sj , F, C).8 This connectivity pattern is completely disregarded in (exLP) and was only used on the
left-hand side of Sj to construct y(Sj ,F,C). The key observation is that any integral solution that is compatible
with both triples (Sj , F, C) and (Si, F , C), and has only large cuts between Si and Sj , provides a legal way
to complete y(Sj ,F,C) as formally described by the following statement.

Lemma 4.12. Let R ⊆
(
V \Si

2

)
be right-compatible with (Si, F , C). Then for any U ⊆ E[Si] such that

T := U ∪ F ∪ R is a spanning tree compatible with both (Sj , F, C) and (Si, F , C), and |T ∩ δ(Sh)| ∈
[max{τ + 1, ah}, bh] for all h ∈ {j + 1, . . . , i− 1}, the following vector is a feasible solution to (exLP):

z := y(Sj ,F,C) + χF\F + χU∩E[Si\Sj] .

The above lemma is crucial to make sure that our dynamic program remains a relaxation of the original
MCCST problem, even though it requires to complement a specific previously computed solution y(Sj ,F,C).
Simply speaking, Lemma 4.12 guarantees that the increment in cost when extending the solution y(Sj ,F,C)
up to the cut Si through our dynamic program is no more than the best integral extension that realizes
both connectivity triples at Sj and Si. This makes sure that the solutions we compute fulfill point (iv) of
Property 4.10. Intuitively, the reason why Lemma 4.12 holds is the following: No matter what precise point
y(Sj ,F,C) we computed, as long as it is left-compatible with (Sj , F, C), it can be completed by any edge set
that is right-compatible with (Sj , F, C) to obtain a point in PST.

Also note that a crucial difference between our dynamic program and the classical way of using dynamic
programming approaches is that we need an explicit solution y(Sj ,F,C) in our propagation/extension step. Only
knowing the connectivity triple (Sj , F, C) ∈ K and the value of a best point y(Sj ,F,C) for that triple would not
be enough. To highlight this contrast, consider for example a classical dynamic programming approach for
the (integer) knapsack problem (see, e.g., [KV18, Section 17.2]). Here, the dynamic program computes for
every possible cost the smallest total weight of items realizing that cost. (Sometimes, the dynamic program
is presented with the roles of costs and weights exchanged, in which case, for every possible weight, the
dynamic program computes a minimum cost solution of that weight.) In the propagation step of this classical
dynamic program, to extend existing partial solutions of smaller cost to partial solutions of larger cost, one
only needs to know the weight and cost of previously computed partial solutions, but not the exact partial
solution. Partial solutions are sometimes saved in classical dynamic programs to quickly retrieve a solution
through backtracking, once the whole dynamic programming table is filled. However, to just determine the
optimal value of a solution, and in particular to perform the propagation steps in the dynamic program, partial
solutions are not used.

4.3.4 Details of the dynamic programming approach for MCCST

In this section, we complete the proofs that are missing to formally ensure that the dynamic programming
approach described above achieves the guarantees claimed by Theorem 4.7. Recall that the dynamic program
initializes y(S0,∅,∅) = 0, and propagates to points y(Si,F,C) ∈ RE>0 for all (Si, F, C) ∈ K using Algorithm 4.2.

Algorithm 4.2: Propagation to y(Si,F ,C) from all y(Sj ,F,C) with j < i.

1. For all (Sj , F, C) ∈ K with j < i, solve the linear program (exLP) and obtain an optimal solution y.

2. Among all solutions y found in step 1, let y(Si,F ,C) be one minimizing c>y. Return y(Si,F ,C).

We start by proving Lemma 4.12, which essentially shows that the extension found by our dynamic
program when solving a linear program of the form (exLP) has cost no more than the best integral extension
that is compatible with the connectivity triples on both sides of the extension.

8Notice that we did not formally define right-compatibility for fractional points because we do not need it, but a natural extension
would be to say that it is a convex combination of right-compatible integral solutions.

88

4.3 The dynamic programming approach for MCCST

Proof of Lemma 4.12. To obtain feasibility of z for (exLP), it is easy to see that the inequality constraints
that are stated explicitly in (exLP) follow immediately by definition of z. Thus, it remains to prove that
z ∈ PST(Si, F , C), i.e., that z is left-compatible with (Si, F , C).

By assumption, the tree T is compatible with (Sj , F, C), hence T ∩
(V \Sj

2

)
is right-compatible with

(Sj , F, C). Moreover, y(Sj ,F,C) is left-compatible with (Sj , F, C). Combining these observations, we see that

y(Sj ,F,C) + χF + χT∩(
V \Sj

2) is in the spanning tree polytope of (V,E ∪R). By partitioning T ∩
(V \Sj

2

)
into

T ∩E[Si \ Sj], F \ F and R, we get that, equivalently, y(Sj ,F,C) + χF + χT∩E[V \Sj] + χF\F + χR is in the

spanning tree polytope of (V,E ∪R), which implies that y(Sj ,F,C) + χF\F + χT∩E[Si\Sj] is left-compatible
with (Si, F , C). As T ∩ E[Si \ Sj] = U ∩ E[Si \ Sj], the Lemma follows.

With the bound on the incremental cost of an extension from Lemma 4.12, we can show that propagating
along Algorithm 4.2, we maintain Property 4.10.

Lemma 4.13. Let i ∈ [k+1] and (Si, F , C) ∈ K. Assume that for all (Sj , F, C) ∈ K with j < i, we are given
points y(Sj ,F,C) satisfying Property 4.10. Then y(Si,F ,C) obtained by Algorithm 4.2 also has Property 4.10.

Proof. Note that any solution of (exLP) satisfies points (i), (ii) and (iii) of Property 4.10 with respect to
(Si, F , C). Point (i) follows directly from the corresponding constraint in (exLP), while (ii) and (iii) are
implied by the constraints in the linear program for cuts Sh with h > j, and follow for cuts Sh with h < j
from the fact that y(Sj ,F,C) has Property 4.10, by assumption.

To see that point (iv) holds, it is enough to see that for any edge set U ⊆ E[Si] fulfilling (i), (ii) and (iii),
there is a connectivity triple (Si, F, C) such that the corresponding solution y of the linear program (exLP)
satisfies c>y 6 c(U). To see this, fix such an edge set U , which is by definition left-compatible with
(Si, F , C). Thus, for any R ⊆

(
V \Si

2

)
that is right-compatible with (Si, F , C), the edge set T := U ∪ F ∪R

is a spanning tree in (V,E ∪R) compatible with (Si, F , C). Let j < i be maximal such that Sj is a T -small
cut. Let F = T ∩ δ(Sj) and let C be the connectivity pattern such that T is compatible with (Sj , F, C).

We claim that (Sj , F, C) is the connectivity triple that we are looking for, i.e., if y is an optimal solution
of (exLP) when extending y(Sj ,F,C) to (Si, F , C), then c>y 6 c(U). Thereto, observe that by definition,
T = U ∪ F ∪R is a spanning tree in (V,E ∪R) compatible with both (Sj , F, C) and (Si, F , C), and by the
choice of j, we also have |T ∩ δ(Sh)| ∈ [max{τ + 1, ah}, bh] for all h ∈ {j + 1, . . . , i− 1}. Thus, R and U
satisfy the assumptions of Lemma 4.12, and we get that z := y(Sj ,F,C) + χF\F + χU∩E[Si\Sj] is a feasible
solution to (exLP). But y is an optimal solution of the same linear program, hence

c>y 6 c>y(Sj ,F,C) + c(χF\F) + c(U ∩ E[Si \ Sj]) .

By assumption, y(Sj ,F,C) satisfies Property 4.10, and applying point (iv) with the edge set U ∩ E[Sj], we get
c>y(Sj ,F,C) 6 c(U ∩ E[Sj]). Combining this with the above, we obtain the desired inequality

c>y 6 c(U ∩ E[Sj]) + c(χF\F) + c(U ∩ E[Si \ Sj]) = c(U) .

The final step before wrapping up and proving Theorem 4.7 is to show the bound on |K| from Proposi-
tion 4.11.

Proof of Proposition 4.11. The set K consists of all connectivity triples (Si, F, C), where i ∈ {0, 1, . . . , k +
1}, F ⊆ δ(Si) has size at most τ , and C is a corresponding connectivity pattern. In order to build such a
triple, there are at most |V |+ 1 options for choosing a set Si (one for each i ∈ {0, . . . , k + 1}, and we have
k 6 |V | − 1). Furthermore, note that δ(Si) can contain at most O(|V |2) many edges of G, hence there are
at most |V |O(τ) many choices for a subset of size at most τ . Finally, C is a partition of the at most τ many
endpoints of the edges in F that do not lie inside Si, and the number of such partitions can be bounded by
|V |O(τ) as well, where we use τ 6 |V | − 1. In total, we thus get |K| 6 |V |O(τ).

89

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Finally, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. We calculate points y(Si,F,C) for all (Si, F, C) ∈ K by initializing y(∅,∅,{∅}) = 0 and
calculating y(Si,F,C) in increasing order of i using the propagation step described in Algorithm 4.2. Note that
y(∅,∅,{∅}) has Property 4.10, and hence, by an inductive application of Lemma 4.13, we obtain that all points
y(Si,F,C) for (Si, F, C) ∈ K have Property 4.10. In particular, Property 4.10 for y(V,∅,{∅}) immediately implies
that this point has the properties claimed by Theorem 4.7. Note that the guarantee on c>y(V,∅,{∅}) follows
from the fact that a cheapest edge set U such that χU fulfils points (i), (ii) and (iii) of Property 4.10 with
respect to (Si, F, C) = (V, ∅, {∅}) is in fact an optimal solution.

For the running time bound, observe that the dominating operation of our dynamic programming procedure
is repeatedly solving linear programs of type (exLP). The total number of such linear programs that we solve
is bounded from above by |K|2, and therefore, the running time of |V |O(τ) follows from Proposition 4.11
and the observation that linear programs of the type (exLP) can be solved in strongly polynomial time.
The latter can be achieved by using a compact extended formulation for the spanning tree polytope with
small coefficients in the constraint matrix (one can, for example, use the one by Martin [Mar91], which has
coefficients that are bounded by 1 in absolute value), and then applying the framework of Tardos [Tar86].

4.4 Local correction steps for rounding procedures in {0, 1}-polytopes

In this section, we discuss details on the proof of Theorem 4.8, used to avoid a (1 + ε)-factor loss in the
objective value. We present this result separately because it may be of independent interest, as it applies to
a broad class of problem settings. At the end of this section, in Section 4.4.3, we briefly discuss how, for
MCCST, an alternative approach introduced by Linhares and Swamy [LS16] also allows for avoiding a loss
in the objective value.

We show Theorem 4.8 by proving a more general statement for {0, 1}-polytopes, based on polyhedral
neighborhoods. We therefore start with some basic polyhedral terminology.9 {0, 1}-polytopes are a represen-
tation of set systems (E,F), where E is a finite ground set and F ⊆ 2E . One can think of F as the feasible
sets of some combinatorial problem over E. For example, E may be the edge set of a graph and F the family
of all spanning trees. The combinatorial polytope PF that corresponds to F is defined by

PF := conv({χF | F ∈ F}) ,

where conv denotes the convex hull. Hence, if F are all spanning trees of a graph, PF is the spanning tree
polytope. For F1, F2 ∈ F and q ∈ Z>0, we say that F2 is in the q-neighborhood of F1 on PF if one can
reach the vertex χF2 of PF from the vertex χF1 by successively traversing at most q edges of PF . Notice
that this natural notion extends the way we modify T to obtain T in Theorem 4.8: Indeed, this follows from
the well-known property that two spanning trees T, T in G—or, more generally, any two bases T, T of a
matroid—have the property that χT , χT are adjacent in PF if and only if |T 4 T | = 2 (see, e.g., [Sch03,
Volume B]). Furthermore, for any y ∈ PF , we denote by PFy ⊆ PF the minimal face of PF that contains y.
Additionally, Fy ⊆ F denotes all sets F ∈ F such that χF ∈ PFy . (Note that these definitions of Fy and
PFy are consistent with (4.4) in the sense that PFy is indeed the combinatorial polytope of the family Fy.)

A key quantity in our derivations is the cardinality ρ(F) of a largest size set in F :

ρ(F) := max{|F | | F ∈ F} .

Typically, when having a set system (E,F) where all sets have the same cardinality, i.e., |F | = ρ(F) for
all F ∈ F , we can obtain slightly stronger results later. We call such set systems equal-cardinality systems.
Note that the family of spanning trees (or bases of any matroid) is an equal-cardinality system. We prove the
following generalization of Theorem 4.8.

9We refer the interested reader to [Sch03, Volume A] for more information on polyhedral combinatorics.

90

4.4 Local correction steps for rounding procedures in {0, 1}-polytopes

Theorem 4.14. Let (E,F) be a set system, let y ∈ PF , c ∈ RE , q ∈ Z>1, and let T be a random set in F
drawn from a distribution satisfying Pr[e ∈ T] = ye for all e ∈ E. Let T ∈ F be a set minimizing c(U)
among all U ∈ F in the q-neighborhood of T on PFy . Then

Pr
[
c(T) 6 c>y

]
>

q

2ρ(F)
.

Moreover, if (E,F) is an equal-cardinality system, then

Pr
[
c(T) 6 c>y

]
>

q

ρ(F)
.

First observe that Theorem 4.14 indeed implies Theorem 4.8.

Proof of Theorem 4.8. We set E to be the edges of G = (V,E), F ⊆ 2E to be all spanning trees in G, and
q = 1. Clearly, in this case we have ρ(F) = |V | − 1 and |F | = ρ(F) for all F ∈ F , because every spanning
tree has precisely |V | − 1 edges. Hence spanning trees form an equal-cardinality system. By Theorem 4.14
we thus obtain

Pr[c(W) 6 c>y] >
1

|V | − 1
,

where W ∈ F is a set minimizing c(U) among all U ⊆ F in the 1-neighborhood of T on PFy .
For the above to imply Theorem 4.8, it suffices to show that any U ⊆ F in the 1-neighborhood of T

on PFy fulfills y(e) ∈ (0, 1) for all e ∈ U∆T . Because PF ⊆ [0, 1]E—i.e., non-negativity constraints and
constraints of type x(e) 6 1 are valid for PF—all points on PFy coincide with y on the edges where y is
integral, i.e.,

PFy ⊆
{
x ∈ [0, 1]E

∣∣ x(e) = y(e) ∀e ∈ E with y(e) ∈ {0, 1}
}
.

This implies that any F ⊆ Fy fulfills y(e) ∈ (0, 1) for all e ∈ F 4 T . Hence, this also holds for any U ⊆ F
in the 1-neighborhood of T on PFy , as desired, and finishes the proof.

4.4.1 Proof of Theorem 4.14

We show Theorem 4.14 in several steps. We first derive a bound on the cost of a well-chosen set A in
the 1-neighborhood of another fixed set F . The following lemma formalizes this statement. The cost
improvement is measured with respect to the cost of some target set Q, which will later be chosen to be a set
in F of smallest cost.

Lemma 4.15. Let (E,F) be a set system. Let c ∈ RE , and F,Q ∈ F with F 6= Q. Then there exists a
neighbor A ∈ F of F on PF satisfying

(i) c(A)− c(Q) 6
(

1− 1
|Q4F |

)
· (c(F)− c(Q)), and

(ii) |Q4A| 6 |Q4 F | − 1.

Moreover, if (E,F) is an equal-cardinality system, then the above properties can be strengthened to

(i’) c(A)− c(Q) 6
(

1− 2
|Q4F |

)
· (c(F)− c(Q)), and

(ii’) |Q4A| 6 |Q4 F | − 2.

Proof. Consider the vertex χF of PF , and the family {A1, . . . , A`} ∈ F of all neighboring sets in F on PF .
We start with a basic polyhedral property, namely that the cone with apex χF spanned by all edges of PF
incident with χF contains the whole polytope, i.e.,

PF ⊆ χF + cone
({
χAi − χF

∣∣ i ∈ [`]
})

.

91

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

In particular, this implies that there exist coefficients λi > 0 for i ∈ [`] such that

χQ = χF +
∑̀
i=1

λi ·
(
χAi − χF

)
.

We are only interested in strictly positive coefficients. Let k be the number of strictly positive coefficients,
and assume, by renumbering the indices, that these are the coefficients λ1, . . . , λk. Hence,

χQ = χF +
k∑
i=1

λi ·
(
χAi − χF

)
,

and λi > 0 for all i ∈ [k]. Let λ :=
∑k

i=1 λi.

Claim. We have λ 6 |Q4 F |. Moreover, if (E,F) is an equal-cardinality system, then λ 6 1
2 |Q4 F |.

Proof of claim. We have

|Q∆F | = ‖χQ − χF‖1

=

∥∥∥∥∥
k∑
i=1

λi ·
(
χAi − χF

)∥∥∥∥∥
1

=

∥∥∥∥∥
k∑
i=1

λi ·
(
χAi\F − χF\Ai

)∥∥∥∥∥
1

=
k∑
i=1

λi ·
∥∥∥χAi\F − χF\Ai∥∥∥

1

=
k∑
i=1

λi · |Ai 4 F | , (4.1)

where the second equality follows from (4.4.1), and the forth one from the fact that all vectors χAi\F −
χF\Ai in the sum are non-positive on entries corresponding to F and non-negative on all other entries.
Now, because Ai are neighbors of F on PF , we have Ai 6= F for i ∈ [k], and hence |Ai 4 F | > 1. This
implies, together with (4.1), the first statement of the claim. Moreover, if (E,F) is an equal-cardinality
system, then Ai 6= F implies |Ai 4 F | > 2, which leads to the strengthened statement of the claim for
equal-cardinality systems.

Taking the scalar product of c with both sides of (4.4.1), and rearranging terms, we get

c(F)− c(Q) =

k∑
i=1

λi · (c(F)− c(Ai)) .

Using an averaging argument, there exists an index j ∈ [k] such that

1

λ
· (c(F)− c(Q)) 6 c(F)− c(Aj) ,

which is equivalent to

c(Aj)− c(Q) 6

(
1− 1

λ

)
(c(F)− c(Q)) .

92

4.4 Local correction steps for rounding procedures in {0, 1}-polytopes

We will show that A := Aj fulfills the statement of the lemma. First observe that (4.4.1) together with the
claim implies that A fulfills properties (i) and (i’), respectively. To show (ii) and (ii’), we show that any Ai for
i ∈ [k] fulfills |Q4Ai| < |Q4 F |. This indeed implies both point (ii) and (ii’), because when dealing with
equal-cardinality systems, the symmetric difference between any two sets in the system has even cardinality.
Hence, it remains to show |Q4Ai| < |Q4 F |.

We start by observing that equation (4.4.1) implies Ai ⊆ Q ∪ F . Indeed, if there were any e ∈ Ai with
e 6∈ Q ∪ F , then this would lead to a strictly positive entry for e on the right-hand side of (4.4.1), whereas
χQ, which appears on the left-hand side of (4.4.1), has a 0-entry at e. Analogously, we can derive that
Q∩F ⊆ Ai, because if there was e ∈ (Q∩F) \Ai, then this would imply that the right-hand side of (4.4.1)
has as its entry at e a value strictly less than 1, contradicting that the left-hand side has a value of 1 at entry e.
In summary, we have Ai ⊆ Q ∪ F and Q ∩ F ⊆ Ai. However, among all sets satisfying these properties,
the set F is the unique set that maximizes the symmetric difference with Q. Because Ai 6= F we thus have
|Q4Ai| < |Q4 F |, as desired, which finishes the proof of Lemma 4.15.

Lemma 4.15 is a statement about finding good sets in the 1-neighborhood of any set F . By repeatedly
applying the lemma, we obtain the following generalization for q-neighborhoods.

Lemma 4.16. Let (E,F) be a set system. Let c ∈ RE , and let F, Q ∈ F with F 6= Q. Then, for any
q ∈ {1, . . . , |Q4 F |}, there exists a set A ∈ F in the q-neighborhood of F on PF satisfying

(i) c(A)− c(Q) 6
(

1− q
|Q4F |

)
· (c(F)− c(Q)), and

(ii) |Q4A| 6 |Q4 F | − q.

Moreover, if (E,F) is an equal-cardinality system, then we obtain the following strengthening. For any
q ∈ {1, . . . , 1

2 |Q4 F |}, there exists a set A ∈ F in the q-neighborhood of F on PF satisfying

(i’) c(A)− c(Q) 6
(

1− 2q
|Q4F |

)
· (c(F)− c(Q)), and

(ii’) |Q4A| 6 |Q4 F | − 2q.

Proof. We prove the lemma by induction on q. For q = 1 the statement holds due to Lemma 4.15. Now
assume q > 1, and we show the inductive step for the case where (E,F) is not necessarily an equal-
cardinality system. The extension to equal-cardinality systems is analogous. By the inductive hypothesis,
there is a set A ∈ F in the (q − 1)-neighborhood of F on PF satisfying

(a) c(A)− c(Q) 6
(

1− q−1
|Q4F |

)
· (c(F)− c(Q)), and

(b) |Q4A| 6 |Q4 F | − (q − 1).

Moreover, applying Lemma 4.15 to F = A, we obtain that there is a set A ∈ F in the 1-neighborhood of A
in PF—and hence, A is a q-neighbor of F in PF—such that

(c) c(A)− c(Q) 6
(

1− 1
|Q4A|

)
· (c(A)− c(Q)), and

(d) |Q4A| 6 |Q4A| − 1.

The fact that A fulfills point (ii) is now an immediate consequence of (b) and (d). Moreover, we have

c(A)− c(Q) 6

(
1− 1

|Q4A|

)
·
(

1− q − 1

|Q4 F |

)
· (c(F)− c(Q))

6

(
1− 1

|Q4 F | − (q − 1)

)
·
(

1− q − 1

|Q4 F |

)
· (c(F)− c(Q))

=

(
1− q

|Q4 F |

)
· (c(F)− c(Q)) ,

where the first inequality follows from (c) and (a), and the second one from (b). Hence, this shows that A
also fulfills (i) and finishes the proof.

93

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Our next lemma, Lemma 4.17, shows that if the value of a set T ∈ F is not significantly larger than c>y,
then there is a good solution in its neighborhood. Afterwards, in Lemma 4.18, we provide a lower bound for
the probability of this happening if T has a distribution with marginals given by y, which is the setting of
Theorem 4.14.

Lemma 4.17. Let (E,F) be a set system, let y ∈ PF , µ > 1, and η = min{c(F) | F ∈ Fy}. Then for any
T ∈ Fy with

(µ− 1) · (c(T)− η) 6 µ · (c>y − η) ,

there is a set U ∈ Fy in the d2ρ(Fy)/µe-neighborhood of T on PFy with c(U) 6 c>y. Moreover, if (E,Fy) is
an equal-cardinality system, then such a set U ∈ F even exists in the dρ(Fy)/µe-neighborhood of T on PFy .

Proof. The statement trivially holds for µ = 1. Hence, assume µ > 1. Let q := dρ(Fy)/µe if (E,F) is an
equal-cardinality system, and q := d2ρ(Fy)/µe otherwise. Furthermore, we define

Q ∈ argmin {c(F) | F ∈ Fy} ,

and hence, c(Q) = η. By Lemma 4.16, there is a set U ∈ Fy in the q-neighborhood of T on PFy satisfying

c(U)− η 6

(
1− 2ρ(Fy)
|Q4 T | · µ

)
· (c(T)− η)

6

(
1− 1

µ

)
· (c(T)− η)

6

(
1− 1

µ

)
· µ

µ− 1
(c>y − η)

= c>y − η ,

where the second inequality follows from 2ρ(Fy) > |Q4 T |, and the third one from the inequality given in
the statement of Lemma 4.17. Hence, U fulfills the properties required by Lemma 4.17, which finishes the
proof.

Lemma 4.18. Let (E,F) be a set system, let y ∈ PF , µ > 1, and η = min{c(F) | F ∈ Fy}. Moreover, let
T be a random set in Fy drawn from a distribution that satisfies Pr[e ∈ T] = ye for all e ∈ E. Then

Pr
[
(µ− 1) · (c(T)− η) 6 µ · (c>y − η)

]
>

1

µ
.

Proof. First observe that c(T) − η is a non-negative random variable with expected value c>y − η, as
Pr[e ∈ T] = ye for all e ∈ E. If c>y = η, then the statement holds because c(T)− η has expectation zero
and is non-negative; thus, it is 0 with probability 1. Assume from now on c>y > η. Then, the lemma is a
consequence of Markov’s inequality, which implies

Pr

[
c(T)− η >

µ

µ− 1
· (c>y − η)

]
6
µ− 1

µ
.

Writing µ−1
µ = 1− 1

µ , we see that this implies the statement of the lemma.

Finally, combining Lemma 4.17 and Lemma 4.18, Theorem 4.14 now readily follows.

Proof of Theorem 4.14. By choosing µ = 2ρ(F)/q in both Lemma 4.17 and Lemma 4.18 we immediately
obtain the first part of Theorem 4.14. The bound for the case of equal cardinality set systems is obtained by
setting µ = ρ(F)/q in both Lemma 4.17 and Lemma 4.18.

94

4.5 Extension to MLCST

4.4.2 Further applications of alteration technique

The presented alteration technique is a rather general approach that is not tightly linked to the MCCST
setting where we applied it. It may thus be of independent interest. In particular, it can be used to avoid a
multiplicative loss in the objective in several contexts where (randomized) rounding approaches are used. We
briefly mention one such application. The following packing result was shown in [CVZ09].

Theorem 4.19 (Theorem 6.2 in [CVZ09]). Let P be the base polytope of a matroid on ground set N , let
A ∈ [0, 1]m×N , and let b ∈ RN . Then there is a (1 + ε,O(logm/log logm))-bicriteria approximation for the
problem

min
{
c>x

∣∣ x ∈ {0, 1}N , x ∈ P, Ax 6 b
}
,

where the first guarantee is w.r.t. the cost of the solution and the second one w.r.t. the overflow on the packing
constraints.

The above approximation was obtained by rounding a point y ∈ P that fulfills c>y 6 c(OPT) through a
negatively correlated rounding procedure. Such a procedure preserves marginals, and hence, falls into the
setting of our Theorem 4.14, which allows for avoiding the loss in the objective, at an additive +1 cost in the
second objective, which is negligible. Through this alteration, one obtains a unicriteria (1,O(logm/log logm))-
approximation.

4.4.3 Alternative approach to avoid 1 + ε loss via techniques of Linhares and Swamy

We briefly want to highlight that a recently introduced approach of Linhares and Swamy [LS16] also allows
for avoiding a (1 + ε)-factor loss in the objective. More precisely, they introduced a Lagrangian relaxation
based approach to reduce certain bicriteria weighted packing problems to bicriteria unweighted packing
problems. Within this framework, they also show how it can be modified to avoid losses in the objective
value under some conditions. For this they need an LP-based rounding procedure with certain properties.

In the following, we focus on the specific problem of MCCST to expand further on this approach and how
it can be made to work in this context. For simplicity, consider an MCCST problem with only upper bounds
on the chain constraints, which falls within the setting of packing constraints considered in [LS16]. Let
y ∈ Q be a fractional point as computed in the first step of Algorithm 4.1. The point y can be interpreted as
an optimal LP solution to a linear program on the minimal face of the spanning tree polytope on which y lies,
together with upper bounds on the chain constraints of large y-value. This allows for interpreting y as an LP
solution as required by the framework of Linhares and Swamy. Additionally, the framework needs a rounding
procedure that both (i) rounds y to a spanning tree T on the same minimal face of the spanning tree polytope
on which y lies, and (ii) the spanning tree T needs to satisfy that |T ∩ δ(Si)| is within a (1± ε)-factor of bi
for each chain constraint corresponding to a set Si for which y is tight, i.e., y(δ(Si)) = bi. Notice that it is
important that the rounding does not just return a tree almost fulfilling the chain constraints, but we also need
that y-tight chain constraints remain nearly-tight after rounding. Our alteration step does not require such a
property, but has other requirements. Hence, the two techniques are not strictly comparable.

The negatively correlated rounding procedure that we employ fulfills both requirements stated above. It
always rounds to a spanning tree on the same minimal face, because it is marginal-preserving. Moreover,
equation (4.2) shows that the load on chain constraints does not change much.

Finally, we want to mention that the framework in [LS16] can also be adjusted to deal with lower bounds
in our context of MCCST.

4.5 Extension to MLCST

The key ingredient of the approximation algorithm for MCCST presented in the previous sections is obtaining
a τ -integral point y that is feasible for the linear relaxation of the problem. Ideally, we would like to find

95

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

such a point in the more general case of MLCST as well, and then apply Theorems 4.5 and 4.8 for rounding
and local corrections, as before.

Unfortunately, analyzing the natural generalization of our dynamic programming approach, where we
determine partial solutions y(S,F,C) for all connectivity triples (S, F, C) with S ∈ L by continuously extending
previously obtained solutions, comes with obstacles even if the laminar family L has constant width. To
highlight some aspects thereof, consider the instance given in Fig. 4.3, where the laminar family L consists
of precisely two sets S1 and S2, and edge costs c are such that edges in E[S1] ∪ E[S2] have cost 1, and all
other edges have cost 0.

u1

v1

w1

u2

v2

w2

u′1

v′1

w′
1

u′2

v′2

w′
2

S1 S2C1 C2

OPT

F1

F2

Figure 4.3: Connectivity triples (S1, F1, C1) and (S2, F2, C2) induced by an optimal solution OPT.

It is easy to see that every optimal solution has cost 2, as for example the one indicated in bold. Note that in
our dynamic program, we would first construct solutions y(Si,F,C) compatible with the pattern (Si, F,S) for
all such connectivity patterns, and then try to extend every combination of solutions on S1 and S2 to a global
solution. Typically, such dynamic programming approaches are analyzed by backtracing an optimal solution.
In our example, consider the optimal solution given in Fig. 4.3. This solution induces the connectivity
triples (S1, F1, C1) and (S2, F2, C2) on S1 and S2, respectively, where Fi = {{ui, u′i}, {vi, v′i}, {wi, w′i}} for
i ∈ {1, 2}, C1 = {{u′1, v′1}, {w′1}} and C2 = {{u′2}, {v′2, w′2}}, as indicated. Ideally, we would like that the
cheapest common extension of y(S1,F1,C1) and y(S2,F2,C2) has cost at most the cost of an optimal solution.
However, note that we could potentially have

y(S1,F1,C1) = χ{{u1,w1}} and y(S2,F2,C2) = χ{{u2,w2}},

in which case we can easily see that there does not even exist a feasible solution that restricts to y(S1,F1,C1)

and y(S2,F2,C2) on S1 and S2, respectively.
Note that in the case of MCCST, where we only had to consider extensions from a single partial solution

on a smaller set, the analysis outlined above was enough to obtain our result (see the proof of Lemma 4.12).
In particular, it was enough to know that the dynamic program considered building a solution along the small
cuts and connectivity triples induced by an optimal solution (even though these are not known upfront). For
MLCST, we deviate from this typical analysis and exploit that the DP considers all potential connectivity
triples on the small cuts induced by an optimal solution. Let us illustrate this in the above example. We claim
that there exist connectivity patterns C′1 and C′2 (potentially different from the patterns C1 and C2 induced by
the optimal solution) such that the best common extension of y(S1,F1,C′1) and y(S2,F2,C′2) has cost at most 2. To
see this, we proceed iteratively, starting with C′1 = C1. Note that if on E[S1], we replace the edges of the
optimal solution by those of y(S1,F1,C1), the new point is a feasible solution and, by definition of y(S1,F1,C1),
the total cost does not increase. Observe that the new set of edges induces a different connectivity pattern on
S2 than OPT did, and let this pattern be C′2 (see Fig. 4.4). Now replacing the optimal solution on E[S2] by
y(S2,F2,C′2), which is χ{{u2,v2}} in our example, we again see that feasibility is guaranteed, and the total cost
does again not increase. To finish the argument, note that we just constructed a common extension of the two
partial solutions y(S1,F1,C′1) and y(S2,F2,C′2) of cost no more than the cost of the optimal solution—thus, the
best extension will be of cost at most OPT, proving the desired guarantee.

The above idea of iteratively defining suitable connectivity patterns can be generalized to an arbitrary
number of sibling sets S1, . . . , Sw, and is crucial in the analysis of the propagation step of our dynamic

96

4.5 Extension to MLCST

u1

v1

w1

u2

v2

w2

u′1

v′1

w′
1

u′2

v′2

w′
2

S1 S2C1 C′2

y(S
1
,F

1
,C

1
)

F1

F2

Figure 4.4: Patching y(S
1
,F

1
,C

1
) induces C′2.

program. For now, we want to highlight that replacing parts of an optimal solution by a previously obtained
partial solution and then inducing new connectivity patterns on other parts requires the partial solutions to be
integral, as there is no notion of induced connectivity patterns for fractional solutions. In our extension steps,
however, we find common extensions of partial solutions through a linear program similar to (exLP), which
will in general not be integral. For this reason, we apply the rounding and local correction methods presented
in Theorems 4.5 and 4.8 after every single extension step, giving integral solutions at every stage and thus
allowing for inducing connectivity patterns iteratively as defined above.

The example from Fig. 4.3 discussed earlier might seem contrived due to the fact that the highlighted
problems could be avoided by breaking ties in the right way, for example by choosing different optimal partial
solutions y(S1,F1,C1) and y(S2,F2,C2). Even though this is the case here, there exist more complex examples
without any tie-breaking options that exhibit the same issue. One such example is presented in Section 4.B.

It is important to also recall that Theorems 4.5 and 4.8 provide guarantees on constraint violation and cost
of the integral solution obtained through rounding only with certain probabilities. For a more concise analysis,
our algorithm will at each step apply the rounding and local correction operations repeatedly until—in
expected polynomial running time—an integral solution with the desired properties is found. More formally,
we obtain a Las Vegas algorithm with the following guarantees.

Theorem 4.20. For every ε > 0, there is a (1, 1 + ε)-approximation algorithm for MLCST with expected
running time |V |O(k log |V |/ε2), where k is the width of the laminar family L.

Note that any Las Vegas algorithm can easily be transformed into a randomized approximation algorithm,
i.e, with deterministic polynomial running time and where the returned solution has the desired properties with
high probability: By Markov’s inequality, the probability that the running time of a single run of the algorithm
guaranteed by Theorem 4.20 is less that twice the expected running time is at least 1/2. Consequently, among
log2 |V | many independent runs, the probability that at least one run succeeds is at least 1 − 1/|V |. Thus,
Theorem 4.2 stated in the introduction is implied by Theorem 4.20.

In the following two sections, we present the modifications of our dynamic programming approach for the
laminar case in detail, and we expand on the ideas highlighted above, leading to a proof of Theorem 4.20.

4.5.1 Dynamic programming in the laminar case

For a formal description of the dynamic programming algorithm for MLCST, we stick to the notation defined
for MCCST, now of course considering the laminar family L instead of the chain S1 (. . . (Sk. We denote
by K the set of all connectivity triples (S, F, C) where S ∈ L ∪ {∅, V }, with the crossing edges F ⊆ δ(S)
satisfying aS 6 |F | 6 min{τ, bS} for S ∈ L, where the parameter τ is the maximal number of edges that
the dynamic program “guesses” in small cuts. For MLCST, we will again choose τ = O(log |V |/ε2).

For every (S, F, C) ∈ K, we use our dynamic program to determine a partial solution T(S,F,C) ⊆ E[S]
with the following properties. For S ∈ L, we denote LS := {S′ ∈ L | S′ (S}.

97

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Property 4.21.
(i) T(S,F,C) is a spanning tree of G(S, F, C).

(ii) (1− ε) · aS′ 6 |(T(S,F,C) ∪ F) ∩ δ(S′)| 6 (1 + ε) · bS′ for all S′ ∈ LS .
(iii) c(T(S,F,C)) is at most the cost of a cheapest edge set U ⊆ E[S] that forms a spanning tree ofG(S, F, C)

and satisfies aS′ 6 |(U ∪ F) ∩ δ(S′)| 6 bS′ for all S′ ∈ LS .

It is clear that if in expected running time |V |O(k log |V |/ε2), we can obtain trees T(S,F,C) with the above
properties, then Theorem 4.20 follows because the tree T := T(V,∅,∅) has precisely the desired properties: (i)
and (ii) state that T is a spanning tree of G violating the cut constraints only by a factor of (1 ± ε), and
by (iii), c(T) is at most the cost of an optimal solution.

To compute all T(S,F,C), we initialize T(∅,∅,{∅}) = ∅, and then propagate to T(S,F,C) for all (S, F, C) ∈ K
in an order such that for all S, S′ ∈ L, if S′ (S, then T(S′,F,C) is computed before T(S,F,C). A new tree
T(S,F,C) is obtained in two steps: First, for all choices of connectivity triples (S1, F1, C1), . . . , (Sw, Fw, Cw)
such that S1, . . . , Sw ∈ LS and S1, . . . , Sw have pairwise empty intersections, we extend the partial solutions
T(Si,Fi,Ci) for i ∈ [w] to a solution T on (S, F, C). In a second step, we find the best solution among all
extensions obtained this way, and keep it as T(S,F,C). The full propagation procedure is summarized in
Algorithm 4.4, and details of a single extension step are described in Algorithm 4.3.

Algorithm 4.3: Extending partial solutions T(S1,F1,C1), . . . , T(Sw,Fw,Cw) to (S, F, C).

1. Let τ := b96 log(2|V |)/ε2c, and let y be a minimizer of

min c>y (lamExLP)

y ∈ PST(Si, F, C)
max{τ + 1, aS′} 6 y(δ(S′)) + |F ∩ δ(S′)| 6 bS′ ∀S′ ∈ L : ∃i ∈ [w] with Si (S′ (S

y(e) = χT(Si,Fi,Ci)(e) ∀e ∈ E[Si], ∀i ∈ [w]

y(e) = χFi(e) ∀e ∈ δ(Si) \ F, ∀i ∈ [w] .

2. Randomly round y with a rounding procedure as guaranteed by Theorem 4.5 to obtain a spanning
tree T0 of G(S, F, C).

3. Find a minimum cost spanning tree T among all spanning trees of G(S, F, C) with |T 4 T0| 6 2
and such that y(e) ∈ (0, 1) for all e ∈ T 4 T0.

4. If T satisfies
(1− ε) · aS′ 6 |(T(S,F,C) ∪ F) ∩ δ(S′)| 6 (1 + ε) · bS′

for all S′ ∈ LS , and c(T) 6 c>y, output T . Else, repeat from step 2.

Let us expand on the nature of the extension step given in Algorithm 4.3. The purpose of the linear
program (lamExLP) is to find a common extension y of the trees T(Si,Fi,Ci) for i ∈ [w] that uses precisely
the edges Fi in the cuts δ(Si), and is left-compatible with (S, F, C). Note that the last condition appears
in (lamExLP) as the constraint y ∈ PST(S, F, C). Additionally, we require that the partial solution y together
with the edges in F satisfy the cut constraints on cuts S′ ∈ L with Si (S′ (S, with a load of at least
τ + 1 on all those cuts. Recall that the latter comes from the idea of finding τ -integral fractional solutions
(which is what we need to control cut sizes in the rounding procedure) and letting the dynamic program try
all combinations of maximal small cuts S1, . . . , Sw (S.

Once a fractional extension y is found, we use a rounding procedure as guaranteed by Theorem 4.5 to
round it to an integral solution, namely a spanning tree T0. Note that by definition, y coincides with T(Si,Fi,Ci)
on E[Si] for all i ∈ [w]. As the rounding scheme is marginal-preserving (property (i) in Theorem 4.5),
it follows that T0 will coincide with these partial solutions as well, thus inheriting their properties. On
E[S \

⋃w
i=1 Si], property (ii) will make sure that all cut constraints are satisfied up to small multiplicative

98

4.5 Extension to MLCST

errors. In step 3, we exploit the exchange steps described in Theorem 4.8 to regain potential loss in the
objective that may have occurred in step 2 compared to c>y. Both step 2 and step 3 can fail with certain
probabilities, hence we repeatedly apply them until an extension with the properties listed in step 4 is found.

We remark that the linear program (lamExLP) might be infeasible for several reasons (impossibility of
completing the edge sets T(Si,Fi,Ci) to a point in PST(S, F, C), infeasibility of the lower bound constraints
on cuts, inconsistencies among the edge sets Fi, loops generated by edges in Fi, etc.). In such a case, we
interpret the cost of a common integral extension T to be∞, which avoids using such extensions later on.

Algorithm 4.4: Propagation to T(S,F,C) from all partial solutions T(S′,F ′,C′) with S′ (S.

1. For every choice of connectivity triples (Si, Fi, Ci) ∈ K′ for i ∈ [w] where S1, . . . , Sw ∈ L are
strict subsets of S with pairwise empty intersections, apply Algorithm 4.3 to extend the trees
T(S1,F1,C1), . . . , T(Sw,Fw,Cw) to (S, F, C). Let T be the set of all trees obtained this way.

2. Return T(S,F,C) ∈ argminT∈T c(T).

Algorithm 4.4 considers all potential candidates for T(S,F,C) that were obtained through extension steps,
and returns the one of minimum cost.

4.5.2 Analyzing the DP

We first show that the trees T(S,F,C) computed by Algorithm 4.3 satisfy Property 4.21. Formally, we prove
this statement by induction. Obviously, the point T(∅,∅,{∅}) has all desired properties. The induction step to
complete the proof is captured by the following lemma.

Lemma 4.22. Let (S, F, C) ∈ K with S 6= ∅. Assume that for all (S′, F ′, C′) ∈ K with S′ (S, we are given
T(S′,F ′,C′) satisfying Property 4.21, and let T(S,F,C) be obtained from Algorithm 4.4. Then T(S,F,C) satisfies
Property 4.21, as well.

Proof. Let T be defined as in Algorithm 4.4, namely the set of all T ⊆ E[S] that were obtained trough
Algorithm 4.3. We already remarked earlier that any such T is a spanning tree of the corresponding graph
G(S, F, C), hence satisfying point (i) in Property 4.21. For point (ii), we prove that every T ∈ T satisfies

(1− ε) · aS′ 6 |(T ∪ F) ∩ δ(S′)| 6 (1 + ε) · bS′

for all S′ ∈ LS . Indeed, for cuts S′ with S′ (Si for some i ∈ [w], we have (T ∪ F) ∩ δ(S′) =
(T(Si,Fi,Ci) ∪ Fi) ∩ δ(Si), hence (4.5.2) follows from the assumption that T(Si,Fi,Ci) has Property 4.21. If
S′ = Si for some i ∈ [w], then (T ∪ F) ∩ δ(S′) = Fi, and we have aS′ 6 |Fi| 6 bS′ by definition
of the connectivity pattern (Si, Fi, Ci). Finally, if Si (S′ (S, then (4.5.2) is guaranteed by step 4 in
Algorithm 4.3.

To see that point (iii) of Property 4.21 holds, fix an edge set U ⊆ E[S] that forms a spanning tree of
G(S, F, C) and satisfies aS′ 6 |(U ∪ F) ∩ δ(S′)| 6 bS′ for all S′ ∈ L with S′ (S. We have to show that
c(T(S,F,C)) 6 c(U). As a first step, consider any T ∈ T and let y be the solution of (lamExLP) that was used
to obtain T . By step 4 in Algorithm 4.3, we have c(T) 6 c>y. It is thus enough to see that one of the linear
programs (lamExLP) considered while propagating to (S, F, C) has a solution y with c(U) > c>y.

To this end, letR ⊆
(
V \S

2

)
be any set of edges that is right-compatible with (S, F, C). Then, T := U∪F∪R

is in the spanning tree polytope of (V,E ∪ R). Let S1, . . . , Sw (S be the maximal χT -small cuts in LS ,
and let Fi = T ∩ δ(Si). We define connectivity patterns C1, . . . , Cw such that (Si, Fi, Ci) ∈ K iteratively as
follows, where T0 := T and i ∈ [w]:

Let Ci s.t. Ti−1 is compatible with (Si, Fi, Ci), and let Ti :=
(
Ti−1 \ E[Si]

)
∪ T(Si,Fi,Ci). (4.2)

First of all, observe that all edge sets Ti are indeed spanning trees, making the above operation well-
defined. To see this, we proceed inductively and assume that Ti−1 is a spanning tree. Compatibility of

99

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Ti−1 with (Si, Fi, Ci) implies that Ti−1 ∩ E[V \ Si] is right-compatible with (Si, Fi, Ci), while T(Si,Fi,Ci)
is left-compatible with (Si, Fi, Ci), by assumption. Thus, (Ti−1 ∩ E[V \ Si]) ∪ Fi ∪ T(Si,Fi,Ci) = (Ti−1 \
E[Si]) ∪ T(Si,Fi,Ci) = Ti is indeed a spanning tree. We claim that the construction in (4.2) leads to a tree Tw
with the properties

(a) c(T) > c(Tw), and
(b) Tw ∩ E[S] is feasible for (lamExLP) when extending from T(S1,F1,C1), . . . , T(Sw,Fw,Cw) to (S, F, C).

These two properties are enough to conclude. As T and Tw are identical outside of E[S], (a) implies that

c(U) = c(T ∩ E[S]) > c(Tw ∩ E[S]) .

Moreover, (b) implies that c(Tw∩E[S]) > c>y, which together with the previous inequality gives the desired
c(U) > c>y.

To see property (a), we show that for all i ∈ [w], we have c(Ti−1) > c(Ti). By definition of Ti, the latter
is equivalent to c(Ti−1 ∩ E[Si]) > c(Ti ∩ E[Si]). But by construction, Ti−1 ∩ E[Si] = U ∩ E[Si], and
Ti ∩ E[Si] = T(Si,Fi,Ci). Note that U ∩ E[Si] is an integral solution of the subproblem on G(Si, Fi, Ci), and
hence Property 4.21 (iii) for T(Si,Fi,Ci) implies c(U ∩ E[Si]) > c(T(Si,Fi,Ci)), which is precisely what we
need. Consequently, we have c(Ti−1) > c(Ti) for all i ∈ [w], and hence

c(T) = c(T0) > c(T1) > . . . > c(Tw) ,

as desired. For property (b), we check that the constraints in (lamExLP) hold for Tw ∩ E[S], i.e., for all
S′ ∈ L such that there is an i ∈ [w] with Si (S′ (S, we prove

max{τ + 1, aS′} 6 |(Tw ∩ E[S]) ∩ δ(S′)|+ |F ∩ δ(S′)| 6 bS′ .

We have |(Tw ∩ E[S]) ∩ δ(S′)|+ |F ∩ δ(S′)| = |Tw ∩ δ(S′)| = |(U ∪ F) ∩ δ(S′)|, where the last equality
follows from the construction of Tw. Thus, the lower bound aS′ and the upper bound bS′ are implied by the
assumption on U . Moreover, the lower bound τ + 1 follows from the definition of S1, . . . , Sw as the maximal
χU∪F -small cuts, implying (4.5.2). Finally, by construction, Tw equals T(Si,Fi,Ci) and Fi on E[Si] and δ(Si),
respectively, for all i ∈ [w]. Consequently, Tw ∩ E[S] satisfies all constraints of (lamExLP). This finishes
the proof of Lemma 4.22.

It remains to analyze the expected running time of an extension step as described in Algorithm 4.3.

Lemma 4.23. Algorithm 4.3 has expected running time |V |O(1).

Proof. First of all, note that every single step of Algorithm 4.3 can be implemented in running time |V |O(1).
In particular, linear programs of the type (lamExLP) can be solved in strongly polynomial time by using
a compact extended formulation for the spanning tree polytope with small coefficients in the constraint
matrix (one can, for example, use the one by Martin [Mar91], which has coefficients that are bounded by 1
in absolute value), and then applying the framework of Tardos [Tar86]. Consequently, the above lemma is
reduced to proving a bound on the expected number of iterations that are needed to achieve the properties
required in step 4.

Replicating the analysis in the proof of Theorem 4.1, we see that Theorems 4.5 and 4.8 imply that the
tree T obtained in steps 2 and 3 of Algorithm 4.3 has the desired properties with probability at least 1/2|V |.
As all iterations are independent, the probability that we succeed precisely at iteration j ∈ Z>0, i.e., in time
j · |V |O(1), is (1− 1/2|V |)j−1 · 1/2|V |. Consequently, the expected running time is

∑
j>1

j · |V |O(1) ·
(

1− 1

2|V |

)j−1

· 1

2|V |
= |V |O(1) ,

where we use that
∑

j>1 j(1− x)j−1 = 1
x2

for x ∈ (0, 1).

100

4.6 Implications in Path TSP and beyond

Together with the bound |K| = |V |O(τ) from Proposition 4.11, we are finally ready to prove Theorem 4.20.

Proof of Theorem 4.20. We run a dynamic program that calculates trees T(S,F,C) for all (S, F, C) ∈ K starting
from the initialization T(∅,∅,{∅}) = ∅, and using Algorithm 4.4 for propagation. Note that T(∅,∅,{∅}) satisfies
Property 4.21, and hence by an inductive application of Lemma 4.22, all trees T(S,F,C) satisfy Property 4.21.
In particular, T(V,∅,{∅}) is thus a tree satisfying the guarantees of Theorem 4.20.

The running time is determined by the number of calls to Algorithm 4.3. For every triple (S, F, C) ∈
K, when calculating T(S,F,C), there is one call to Algorithm 4.3 for every possible choice of triples
(S1, F1, C1), . . . , (Sw, Fw, Cw) ∈ K with S1, . . . , Sw ∈ LS having pairwise empty intersections. Note
that L has width k, so there are at most k sets with pairwise empty intersection, i.e., w 6 k. This implies
that the number of calls to Algorithm 4.3 is bounded from above by |K|k+1. Consequently, the bound on the
expected running time of |V |O(kτ) follows from combining Proposition 4.11 and Lemma 4.23.

4.6 Implications in Path TSP and beyond

In this section, we present an application of our new dynamic programming technique to Path TSP and one
natural generalization of it, namely the problem of finding connected T -joins. We remark that in order to
keep notation unambiguous, we reserve the variable T for trees and use Q instead in Q-joins throughout the
rest of this chapter.

Observe that the solution structure in the connected Q-join problem is more general than for Path TSP, as
by definition, Q-joins are edge multisets, while a path can contain every edge at most once. However, it turns
out that the connected Q-join problem always has optimal solutions with simpler structure, as the following
theorem shows.

Theorem 4.24 (Cheriyan, Friggstad, Gao [CFG15]). Let G = (V,E) be a complete graph with metric edge
lengths ` : E → R>0, and let Q ⊆ V be non-empty and of even cardinality. Given a connected Q-join J , a
spanning tree T of G with `(T) 6 `(J) that is a connected Q-join can be found efficiently.

The proof of Theorem 4.24 exploits the assumption that the instance is metric, and shows that whenever a
Q-join has parallel edges or cycles, shortcutting allows for a reduction. In particular, Theorem 4.24 shows
that indeed, Path TSP is a special case of the connected Q-join problem, as for Q = {s, t} with s 6= t, a
spanning tree that is a connected Q-join is a Hamiltonian s-t path. Moreover, by Theorem 4.24, we also see
that it is enough for an approximate solution to compare well to optimal spanning trees, which is a crucial
observation for simplifying our analysis.

With the above said, we give a short recap of the approach by Christofides’ for TSP and Path TSP [Chr76]
in the context of the more general shortest connected Q-join problem. More precisely, we walk through
a polyhedral analysis of Christofides’ Algorithm due to Wolsey [Wol80]. These ideas form the basis of
essentially all improvements in approximation algorithms for Path TSP over the last few years [AKS15;
GV16; SZ16; TV18; Vyg16], culminating in a recent 3/2-approximation algorithm for Path TSP by Zenklusen
[Zen19] that was later beaten by combining the result of Karlin, Klein, and Gharan [KKG21], who provide an
approximation factor of 3/2− δ for some δ > 10−36 for TSP, and the result of Traub, Vygen, and Zenklusen
[TVZ20] that reduces Path TSP to TSP at an arbitrarily small loss in the approximation factor.

4.6.1 Christofides’ algorithm and Wolsey’s analysis

Christofides’ algorithm builds on the observation that a solution has to satisfy two properties, namely
connectivity and correct degree parities. Connectivity can be guaranteed by starting with a spanning tree T .
The degree parities of T are wrong precisely at the vertices in QT := odd(T)4Q, which can be corrected
by adding a QT -join J to T .10 The multiset obtained by combining T and J can be shortcut to a solution

10By odd(T), we denote the set of odd-degree vertices in T .

101

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

of the problem, and approximation guarantees follow by choosing T and J such that `(T) and `(J) can be
bounded in terms of `(OPT), where OPT denotes an optimal solution of the problem.

While it is easy to observe that for a shortest spanning tree T , we have `(T) 6 `(OPT), bounds on `(J)
for a shortest QT -join J can for example be obtained by exploiting polyhedral descriptions of Q-joins. In
particular, the dominant of the Q-join polytope11 is given by

P ↑Q-join :=
{
x ∈ RE>0

∣∣x(δ(C)) > 1 ∀Q-cuts C ⊆ V
}
,

where a Q-cut C is a subset of V with |C ∩Q| odd (see [Sch03, Section 29]). By integrality of this polytope,
in order to prove a bound of the form `(J) 6 γ · `(OPT) for a shortest QT -join J , it is sufficient to find a
point z ∈ P ↑QT -join with `>z 6 γ · `(OPT), and a (1 + γ)-approximation follows.

In many approaches, an important role for finding a suitable point z is taken by a linear relaxation of the
problem. For the connected Q-join problem, we use the formulation

min `>x

x(δ(C)) > 2 ∀C (V, C 6= ∅, |C ∩Q| even

x(δ(C)) > 1 ∀C ⊆ V, |C ∩Q| odd

x ∈ RE>0 ,

(LPHK)

which is an adaptation of the well-known Held-Karp relaxation for TSP.
If x∗ is an optimal solution of (LPHK), the point z = x∗/2 is a good candidate for a feasible point of

P ↑QT -join. More precisely, observe that the constraint z(δ(C)) > 1 is violated precisely for cuts C with
x∗(δ(C)) < 2. As δ(C) = δ(V \ C), we can fix a vertex q ∈ Q, and it is enough to consider the cuts in the
family

N := {C ⊆ V | q /∈ C, x∗(δ(C)) < 2} ,

the so-called narrow cuts of x∗. By the first constraint in (LPHK), only cuts C with |C ∩ Q| odd can be
narrow. Moreover, note that the constraints z(δ(C)) > 1 only appear in the description of P ↑QT -join if C is a
QT -cut, but this is not necessarily the case for all C ∈ N . If indeed, none of the narrow cuts are QT -cuts, we
conclude that z = x∗/2 is feasible for P ↑QT -join. Using that `>x∗ 6 `(OPT), we get

`(T) + `(J) 6 3/2 · `(OPT) ,

and hence a 3/2-approximation. In particular, if we could obtain an optimal solution x∗ of (LPHK) and a tree
T ∗ with `(T ∗) 6 `(OPT) that has an odd number of edges in every narrow cut of x∗, we could achieve the
above result. To see this, consider a narrow cut C, and observe that∑

v∈C
degT∗(v) = 2 · |T ∗ ∩ E[C]|+ |T ∗ ∩ δ(C)| .

The assumption that |T ∗ ∩ δ(C)| is odd implies that T ∗ has an odd number of odd-degree vertices in C. As
|C ∩Q| is odd, we conclude that |C ∩QT∗ | = |C ∩ (odd(T ∗)4Q)| is even, i.e., C is indeed not a QT∗-cut.

Ideally, we would thus like to find a spanning tree T ∗ that has an odd number of edges in each narrow cut
C ∈ N . Cheriyan, Friggstad, and Gao [CFG15] showed that the family N is in fact a laminar family. We
additionally observe that the width of this family is at most |Q| − 1: Every cut C ∈ N has odd intersection
with Q, i.e., it contains at least one element of Q\{q}, so there can be at most |Q|−1 many mutually disjoint
sets in N . However, even for a chain, one can see that it is NP-hard to decide whether there is a spanning

11The dominant of the Q-join polytope is the set of all points x ∈ RE such that there is a convex combination y =
∑k
i=1 λiχ

J
i

of characteristic vectors χJi ∈ {0, 1}E of Q-joins Ji with λi > 0 for i ∈ [k] such that y 6 x.

102

4.6 Implications in Path TSP and beyond

tree that is odd in each cut.12 As an alternative, we can also use a tree T with slightly weaker properties, and
instead modify the vector z to obtain a feasible point for P ↑QT -join. In particular, observe the following.

Observation 4.25. Assume that we are given an optimal solution x∗ of (LPHK), a tree T and a point
y ∈ RE>0 with the following properties.

(i) For all narrow cuts C of x∗, either |T ∩ δ(C)| is odd, or y(δ(C)) > 1/ε.
(ii) `>y 6 `(OPT), and `(T) 6 `(OPT).

Then, shortcutting the combination of T and a shortest QT -join J gives a (1.5 + ε)-approximate solution for
the connected Q-join problem.

Proof. We claim that z := 1
2(x∗ + εy) ∈ RE>0 satisfies z ∈ P ↑TQ-join. From the above discussion and the

bounds in (ii), this immediately implies the observation. The constraints of the form z(δ(C)) > 1 are
obviously satisfied for non-narrow cuts C of x∗, and we saw that they do not appear in the description of
P ↑QT -join for narrow cuts C if |T ∩ δ(C)| is odd. For the remaining narrow cuts C, property (i) implies
y(δ(C)) > 1/ε, and hence z(δ(C)) > 1

2(1 + ε · 1/ε) = 1.

The close relation of y and T that is required in Observation 4.25 motivates studying τ -odd solutions,
which to some extent embrace properties of y and T .

Definition 4.26 (τ -odd). For τ ∈ Z>0 such that τ is odd, and a family F of cuts, we say that a point y ∈ RE

is τ -odd (with respect to F), if for each C ∈ F , either

(i) y(δ(C)) 6 τ , y is integral on the edges in δ(C), and y(δ(C)) is odd, or
(ii) y(δ(C)) > τ + 2.

We call the cuts C satisfying (i) and (ii), respectively, the y-small and y-large cuts.

Note that, for τ ≈ 1/ε, given a short τ -odd point y ∈ PST with respect to the narrow cuts N of an optimal
solution x∗ of (LPHK), a tree with the properties needed in Observation 4.25 could be obtained as a minimum
length spanning tree T such that χT coincides with y on the integral edges of y. This reduces the problem to
finding short τ -odd points, which is where our dynamic programming approach can help.

4.6.2 Obtaining τ -odd points via our DP

We now discuss how our dynamic programming approach can be adjusted to compute τ -odd points. Note
that τ -odd points are by definition very similar to τ -integral points: The extra constraint is essentially that a
τ -odd point can only have an odd number of edges in small cuts. Our dynamic programming approach can
easily handle this type of constraints, as edges in small cuts are always determined by the connectivity triples
used. Thus, if we define the set

K′ :=
{

(S, F, C) ∈ K
∣∣ |F | odd

}
∪
{

(∅, ∅, {∅}), (V, ∅, {∅})
}

and run the dynamic program presented in Section 4.3 with K′ instead of K (and no lower or upper bounds
on the cuts), we immediately obtain the following analogue of Theorem 4.7.

Theorem 4.27. Let C be a chain of cuts. For any τ ∈ Z>0, there is an algorithm that returns in |V |O(τ) time
a τ -odd point y ∈ PST with respect to C such that c>y 6 c(T) for every spanning tree T that has an odd
number of edges in every cut in C.

12 NP-hardness can for example be derived by a reduction from the Hamiltonian s-t path problem. For this consider an arbitrary
numbering of the vertices V = {v1, . . . , vn} with v1 = s and vn = t, and consider the complete chain S1, . . . , Sn−1, where
Si = {v1, . . . , vi} for i ∈ [n− 1]. First, the cuts S1 and Sn−1 ensure that a spanning tree that is odd in each cut must have odd
degree at v1 and vn. Moreover, for any i ∈ {2, . . . , n− 1}, the vertex vi must have even degree in the spanning tree due to the cut
constraints on Si−1 and Si. Because the degrees of a spanning tree on n vertices sum up to 2(n− 1), this implies that v1 and vn
must have degree 1, and all other vertices degree 2. However, a spanning tree with these properties is a Hamiltonian v1-vn path, and
any Hamiltonian v1-vn path is such a spanning tree.

103

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

The above is precisely what we need for Path TSP: In this special case, we have Q = {s, t}, hence the
family N of narrow cuts has width 1, i.e., it is a chain. This was also observed earlier by An, Kleinberg and
Shmoys [AKS15] and has been crucial in many recent improvements for Path TSP. In our case, it guarantees
applicability of Theorem 4.27, and allows the approximation algorithm for Path TSP stated as Algorithm 4.5,
which we analyze to prove Theorem 4.3 below.

Algorithm 4.5: Polynomial (3/2 + ε)-approximation for Path TSP

1. Let x∗ be an optimal solution of (LPHK), and let C be the family of narrow cuts of x∗ not
containing t.

2. Let τ ∈ {b1/εc, b1/εc+ 1} odd, and use the algorithm guaranteed by Theorem 4.27 to find a τ -odd
point y ∈ PST with respect to C.

3. Let T be the shortest spanning tree of G such that χT coincides with y on all integral edges of y.

4. Let J be a shortest QT -join in G, and return the shortcutted multiunion of J and T .

Proof of Theorem 4.3. We claim that the pair (y, T) generated in Algorithm 4.5 has the properties listed in
Observation 4.25. To see that point (i) holds, first note that by τ -oddness of y with respect to C, we have that
for every narrow cut C of x∗, either y(δ(C)) > τ + 2 > 1/ε, or y is integral on δ(C) and y(δ(C)) is odd. As
χT coincides with y on all integral edges of y, the latter case in particular implies that χT coincides with y
on δ(C), and consequently, |T ∩ δ(C)| is odd. Hence, point (i) is satisfied. For point (ii), observe that by
definition, c(T) 6 c>y, and Theorem 4.27 implies c>y 6 c(OPT). Together, this yields c(T) 6 c(OPT),
as desired.

By Observation 4.25, it follows that Algorithm 4.5 is a (1.5 + ε)-approximation for Path TSP. For a
running time guarantee, we observe that all steps in Algorithm 4.5 can be performed efficiently. For step 1,
note that the minimum cut in G with respect to weights x∗ has value at least 1 by the lower bounds in the
relaxation (LPHK), and enumerating all cuts with values that are within a factor of 2 from the minimum
cut can be done in time O(|V |4|E|) (see [NNI97]). Step 2 can be done in time |V |O(1/ε) by Theorem 4.27.
Finally, minimum length Q-joins can be obtained efficiently (see [EJ73], for example), with running times
dominated by the second step. Thus, the running time of Algorithm 4.5 is |V |O(1/ε). This completes the proof
of Theorem 4.4.

The above approach exploits that the τ -odd point y lies in the spanning tree polytope: This guarantees that
a spanning tree T coinciding with y on integral edges can be found in step 3 of Algorithm 4.5. In the more
general case of connected Q-joins with |Q| > 2, the narrow cuts N no longer form a chain, which causes
problems in directly extending the propagation step of our dynamic programming approach, as we highlighted
in the generalization from MCCST to MLCST. With minor modifications, ideas of this generalization also
help for the connected Q-join problem. In fact, a simple alteration of the extension step can be used to obtain
a pair (y, T) with the properties highlighted in the following theorem.

Theorem 4.28. For any odd τ ∈ Z>0 and a laminar family L of width k, there is an algorithm that returns
in time |V |O(kτ) a point y ∈ RE>0 and a spanning tree T of G with the following properties:

(i) y is τ -odd with respect to L.
(ii) χT coincides with y on all y-small cuts in L.

(iii) `(T) 6 `>y 6 `>x for every τ -odd point x ∈ PST ∩ ZE>0.

Observe that Theorem 4.28 allows for bounding the length of the τ -good points that we find from above
by the length of τ -good spanning trees only, but by Theorem 4.24, this is sufficient for comparing to optimal
solutions of the Q-join problem, once we prove that connected Q-joins that are spanning trees are indeed τ -
good. From the above ingredients, we obtain our approximation algorithm for the connected Q-join problem,
which is stated as Algorithm 4.6 below. It is this algorithm that we analyze for a proof of Theorem 4.4.

104

4.6 Implications in Path TSP and beyond

Algorithm 4.6: Polynomial (3/2 + ε)-approximation for the shortest connected Q-join problem

1. Let x∗ be an optimal solution of (LPHK), and let N be the family of all narrow cuts of x∗ not
containing a fixed element q ∈ Q.

2. Let τ ∈ {b1/εc, b1/εc+ 1} be odd, and use the algorithm guaranteed by Theorem 4.28 to find a pair
(y, T) of a τ -odd point y ∈ RE>0 and a spanning tree T of G.

3. Let J be a shortest QT -join in G, and return the multiunion of J and T .

Proof of Theorem 4.4. As in the proof of Theorem 4.3, it is easy to see that the pair (y, T) returned by
Algorithm 4.6 satisfies point (i) in Observation 4.25. To prove that point (ii) holds, we claim that for any
spanning tree S that is a Q-join, χS is a τ -good solution of PST with respect to N . By Theorem 4.28,
this implies that `>y 6 `(S) for all spanning trees S that are Q-joins. By Theorem 4.24, at least one
such spanning tree is in fact an optimal solution to the Q-join problem, and thus `>y 6 `(OPT) follows.
Furthermore, Theorem 4.28 also implies `(T) 6 `>y 6 `(OPT).

For concluding the approximation guarantee of 3/2+εwith the help of Observation 4.25, it is thus sufficient
to prove the claim. Thereto, consider a spanning tree S that is a Q-join, and let C ∈ N . We show that
χS(δ(C)) is odd, which implies the claim due to integrality of χS . Double counting the edges in S ∩ E[C],
we get

χS(δ(C)) = |S ∩ δ(C)| =
∑
v∈C

degS(v)− 2 · |S ∩ E[C]| .

Consequently, χS(δ(C)) has the same parity as the number of odd-degree vertices in C with respect to S.
But as S is a Q-join, the latter number is equal to |C ∩Q|, and as we already observed previously, all C ∈ N
satisfy that |C ∩Q| is odd. This finishes the proof of the claim.

Finally, in order to obtain a running time bound, note that step 1 can be done in time O(|V |4|E|) (see
the proof of Theorem 4.3). The second step has running time |V |O(k/ε) by Theorem 4.28, and minimum
length Q-joins can be obtained efficiently (see [EJ73], for example), with running times dominated by the
second step. Thus, the running time of Algorithm 4.6 is bounded by |V |O(|Q|/ε). This completes the proof of
Theorem 4.4.

It thus remains to give a proof of Theorem 4.28, which we outline in the remainder of this section. We adopt
the dynamic programming approach used for MLCST, where in order to make sure that the DP guesses an odd
number of edges in small cuts, we use K′ instead of K throughout the procedure. For every connectivity triple
(S, F, C) ∈ K′, the dynamic programming approach will construct a pair (y(S,F,C), T(S,F,C)) ∈ RE>0 × 2E

with the following property.

Property 4.29.

(i) supp(y(S,F,C)) ⊆ E[S], and y(S,F,C) is τ -odd with respect to LS .
(ii) χT(S,F,C) ∈ PST(S, F, C), and χT(S,F,C) coincides with y(S,F,C) on all y(S,F,C)-small cuts in LS .

(iii) For all U ⊆ E[S] such that χU ∈ PST(S, F, C) and χU + χF is τ -odd with respect to LS , we have
`(T(S,F,C)) 6 `>y(S,F,C) 6 `(U).

It is clear that if we can construct such pairs for all triples (S, F, C) ∈ K′, then we are done, as
(y(V,∅,{∅}), T(V,∅,{∅})) satisfies the assumptions of Observation 4.25. To maintain pairs (y, T) in the dy-
namic program, we replace the extension step (Algorithm 4.3) by the one presented in Algorithm 4.7
below.

105

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Algorithm 4.7: Extending (y(S1,F1,C1), T(S1,F1,C1)), . . . , (y(Sw,Fw,Cw), T(Sw,Fw,Cw)) to (S, F, C).

1. Let z be a minimizer of the linear program

min `>z (lamExLP2)
z ∈ PST(S, F, C)

z(δ(S′)) + |F ∩ δ(S′)| > τ + 2 ∀S ∈ L such that ∃i ∈ [w] with Si (S′ (S

z(e) = χT(Si,Fi,Ci)(e) ∀e ∈ E[Si], ∀i ∈ [w]

z(e) = χFi(e) ∀e ∈ δ(Si) \ F, ∀i ∈ [w] .

2. Define y ∈ RE>0 by y(e) =

{
y(Si,Fi,Ci)(e) if e ∈ E[Si] for some i ∈ [w],
z(e) else.

3. Let T ⊆ E[S] be of minimum length `(T) such that
(i) χT ∈ PST(S, F, C), (ii) T ∩ E[Si] = T(Si,Fi,Ci) ∀i ∈ [w], and (iii) T ∩ δ(Si) = Fi ∀i ∈ [w].

4. Output (y, T).

The idea of this modified extension step is to maintain both a fractional point and a spanning tree at every
stage, where (as in the dynamic program for MLCST) extension steps using the linear program are always
based on trees. A new fractional point is then obtained by combining the potentially fractional extension with
the fractional solutions of the subproblems (see step 2). Opposed to the situation in MLCST, the application
here only requires spanning trees that have an odd number of edges in small cuts of the corresponding
fractional point. This is easily achieved by the construction of the trees in step 3. This construction guarantees
that every pair (y, T) returned by Algorithm 4.7 satisfies the first two points of Property 4.29 with respect to
the connectivity triple (S, F, C), which we formally prove in Lemma 4.30.

For propagation, we use Algorithm 4.8, which is an analogon of Algorithm 4.4. It considers all potential
candidates for (y(S,F,C), T(S,F,C)) that can be obtained through extension steps, and the shortest pair (y, T)
with respect to `>y is returned.

Algorithm 4.8: Propagation to (y(S,F,C), T(S,F,C)) from all (y(S′,F ′,C′), T(S′,F ′,C′)) with S′ (S.

1. For every choice of triples (Si, Fi, Ci) ∈ K′ for i ∈ [w] where S1, . . . , Sw (S have pairwise empty
intersections, apply Algorithm 4.7 to extend (y(S1,F1,C1), T(S1,F1,C1)), . . . ,
(y(Sw,Fw,Cw), T(Sw,Fw,Cw)) to (S, F, C). Collect all pairs (y, T) obtained this way in the set P .

2. Return (y(S,F,C), T(S,F,C)) ∈ argmin(y,T)∈P `
>y.

We now show that the pairs (y, T) returned by Algorithm 4.8 have Property 4.29. Adapting the ap-
proach pursued in the case of MLCST (Lemma 4.22), we proceed by induction. Obviously, the pair
(y(∅,∅,{∅}), T(∅,∅,{∅})) = (0, ∅) satisfies Property 4.29, and the inductive step is given by the following lemma.

Lemma 4.30. Let (S, F, C) ∈ K′ with S 6= ∅. Assume that for all (S′, F ′, C′) ∈ K′ with S′ (S, we are given
(y(S′,F ′,C′), T(S′,F ′,C′)) satisfying Property 4.29, and let (y(S,F,C), T(S,F,C)) be obtained from Algorithm 4.8.
Then (y(S,F,C), T(S,F,C)) satisfies Property 4.29, as well.

Proof. Let P be defined as in Algorithm 4.8. We already remarked above that all pairs (y, T) ∈ P
satisfy point (i) and point (ii) of Property 4.29 with respect to the connectivity triple (S, F, C). Indeed,
supp(y(S,F,C)) ⊆ E[S] holds by definition, as well as χT(S,F,C) ∈ PST(S, F, C). Additionally, the facts that
y(S,F,C) is τ -odd with respect to LS and that χT(S,F,C) coincides with y(S,F,C) on all y(S,F,C)-small cuts in LS
are true by definition for cuts L ∈ LS with Si (L for some i ∈ [w]; and they are implied by the assumptions
on (y(Si,Fi,Ci), T(Si,Fi,Ci)) through Property 4.29 for cuts L ∈ LS with L (Si for some i ∈ [w].

106

4.6 Implications in Path TSP and beyond

Moreover, for any pair (y, T) ∈ P we also have `(T) 6 `>y: If z is the solution of the linear pro-
gram (lamExLP2) that was used to define y, then `(T) 6 `>z because χT is in fact an optimal solution of the
same linear program without the constraints z(δ(S)) > τ+2. As by assumption, `(T(Si,Fi,Ci)) 6 `>y(Si,Fi,Ci),
we further see that `>z 6 `>y, and hence `(T) 6 `>y, which is the first statement in point (iii).

Thus, it remains to prove that there exists a pair (y, T) ∈ P such that `>y 6 `(U) for every set U ⊆ E[S]
such that χU ∈ PST(S, F, C) and χU + χF is τ -odd with respect to LS . Fix such a set U , and let R ⊆

(
V \S

2

)
be any set of edges that is right-compatible with (S, F, C). Then, T := U ∪ F ∪ R is in the spanning tree
polytope of (V,E ∪R). Let S1, . . . , Sw (S be the maximal χT -small cuts in LS , and let Fi = T ∩ δ(Si).
We define connectivity patterns C1, . . . , Cw such that (Si, Fi, Ci) ∈ K′ iteratively as follows, where T0 := T
and i ∈ [w].

Let Ci s.t. Ti−1 is compatible with (Si, Fi, Ci), and let Ti :=
(
Ti−1 \ E[Si]

)
∪ T(Si,Fi,Ci). (4.3)

We claim that if extending (y(S1,F1,C1), T(S1,F1,C1)), . . . , (y(Sw,Fw,Cw), T(Sw,Fw,Cw)) to (S, F, C) using Algo-
rithm 4.7 returns the pair (y, T), then `>y 6 `(U). To this end, observe that if z is the solution of the linear
program (lamExLP2) used in this call to Algorithm 4.7, then we can write

`>y =
∑
i∈[w]

`>y(Si,Fi,Ci) + `>z −
∑
i∈[w]

`(T(Si,Fi,Ci)) . (4.4)

We will bound the right-hand side by `(U). Thereto, we claim that by the construction in (4.3), we have
`>y(Si,Fi,Ci) 6 `(U∩E[Si]). This follows from invoking Property 4.29 (iii) for the pair (y(Si,Fi,Ci), T(Si,Fi,Ci))
(which is satisfied by assumption) with the edge set U ∩ E[Si]. To this end, we have to show that (a)
χU∩E[Si] ∈ PST(Si, Fi, Ci), and (b) χU∩E[Si] + χFi is τ -odd with respect to LSi . Indeed, (a) follows
from the fact that Ti−1 is compatible with (Si, Fi, Ci), hence χTi−1∩E[Si] ∈ PST(Si, Fi, Ci), and Ti−1 ∩
E[Si] = U ∩ E[Si] by construction; (b) follows from χU + χF being τ -odd with respect to LS , as Si (S.
Furthermore, note that Tw is compatible with (S, F, C), hence Tw ∩E[S] is left-compatible with (S, F, C),
i.e., χTw∩E[S] ∈ PST(S, F, C). Moreover, we can write

Tw ∩ E[S] =
(
U \

⋃
i∈[w]E[Si]

)
∪
⋃
i∈[w] T(Si,Fi,Ci) ,

and from this form and the fact that S1, . . . , Sw are maximal χT -small cuts in LS , it can be seen that
Tw ∩ E[S] is an integral solution of (lamExLP2). As z is an optimal fractional solution of the same linear
program, we have `>z 6 `(Tw ∩ E[S]). Applying the inequalities that we just obtained to (4.4), we get

`>y 6
∑
i∈[w]

`(U ∩ E[Si]) + `(Tw ∩ E[S])−
∑
i∈[w]

`(T(Si,Fi,Ci))

=
∑
i∈[w]

`(U ∩ E[Si]) + `
(
U \

⋃
i∈[w]E[Si]

)
= `(U) ,

as desired.

In order to bound the running time of our dynamic program, we need an upper bound on the number of
connectivity triples in K′, but this is easily obtained from the upper bound |K| 6 |V |O(τ) in Proposition 4.11:
We have K′ ⊆ K, and thus also |K′| 6 |V |O(τ). With these ingredients, we are finally ready to formally
prove Theorem 4.28.

Proof of Theorem 4.28. We run a dynamic program that calculates pairs (y(S,F,C), T(S,F,C)) for all (S, F, C) ∈
K′ starting with the initialization (y(∅,∅,{∅}), T(∅,∅,{∅})) = (0, ∅), and using Algorithm 4.8 for propagation
in an order such that (y(S′,F ′,C′), T(S′,F ′,C′)) is computed before (y(S,F,C), T(S,F,C)) if S′ (S. Note that

107

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

(y(∅,∅,{∅}), T(∅,∅,{∅})) satisfies Property 4.29, and hence by an inductive application of Lemma 4.30, all pairs
(y(S,F,C), T(S,F,C)) satisfy Property 4.29. In particular, (y(V,∅,{∅}), T(V,∅,{∅})) is thus a pair satisfying the
guarantees of Theorem 4.28.

In terms of running time, the dominating operation is repeatedly solving linear programs of the type (lamExLP2).
The total number of linear programs that we have to solve during this procedure is bounded from above
by |K′|k+1, and the running time of |V |O(kτ) thus follows from K′ ⊆ K and Proposition 4.11, as remarked
above, and the fact that linear programs of the type (lamExLP2) can be solved in strongly polynomial time by
using a compact extended formulation for the spanning tree polytope with small coefficients in the constraint
matrix (one can, for example, use the one by Martin [Mar91], which has coefficients that are bounded by 1 in
absolute value), and then applying the framework of Tardos [Tar86].

Appendix 4.A Weakness of the natural relaxation

In this section, we demonstrate that the natural relaxation of MCCST, which is given by

Q = {x ∈ PST | ai 6 x(δ(Si)) 6 bi ∀i ∈ [k]} ,

is too weak for allowing small bounds on constraint violation when comparing an integral solution to
fractional solutions of the relaxation. More precisely, we show the following.

Theorem 4.31. For every ε > 0, there is an instance of the MCCST problem such that there exists a point
y ∈ Q, but for any tree T satisfying the chain constraints, there is a cut C in the chain such that

|T ∩ δ(C)| > (2− ε) · y(δ(C)) .

Proof. We construct a family of instances of the MCCST problem depending on a parameter k ∈ Z>0, where
each instance has the properties listed in Theorem 4.31, but with a factor 2− 2/(k + 2) instead of 2− ε. This
is obviously enough to conclude the theorem because for a fixed ε > 0 and large enough k, we obtain an
instance with the desired properties.

For k ∈ Z>0, let Hk be the graph obtained as follows. Start with a path of length 2k−1 on vertices
v0, v1, . . . , v2k−1 , and for all i, j ∈ {0, 1, . . . , 2k−1} such that j − i = 2` for some ` ∈ Z>0, add a path of
length 2 between vi and vj . More precisely, for any such i and j, we add a new vertex wi,j as well as edges
{vi, wij} and {wij , vj}. Additionally, we define cuts S` for ` ∈ [2k] by

S` := {vi | 2i < `} ∪ {wi,j | i+ j < `} .

Note that for `1 < `2, we have S`1 ⊆ S`2 , and thus the family Sk := {S1, S2, . . . , S2k} is a chain. An
illustration of this construction for k = 3 is given in Fig. 4.5.

To complete the instances of the MCCST problem and to ensure feasibility, we can define a` = 0 and
b` = k + 1 for all ` ∈ [2k]. Note that this is equivalent to not putting any constraints on the sizes of the given
cuts. In fact our arguments are independent of the precise degree bounds (given feasibility).

We first observe that the corresponding relaxation Q has solutions with small weight on all cuts in Sk. To
this end, define y ∈ RE>0 by

y(e) =

{
1 if e = {vi−1, vi} for some i ∈ [2k−1],
1/2 else.

Note that y is indeed a point in PST. This can be seen by writing y = (x1 + x2)/2, where x1, x2 ∈ RE>0 are
incidence vectors of spanning trees given by

x1(e) =

1 if e = {vi−1, vi} for some i,
1 if e = {vi, wi,j} for some i, j,
0 if e = {wi,j , vj} for some i, j,

and x2(e) =

1 if e = {vi−1, vi} for some i,
0 if e = {vi, wi,j} for some i, j,
1 if e = {wi,j , vj} for some i, j.

108

4.A Weakness of the natural relaxation

v0 v1 v2 v3 v4

S1 S2 S3 S4 S5 S6 S7 S8

w0,1 w1,2 w2,3 w3,4

w0,2 w2,4

w0,4

Figure 4.5: The graph Hk and the family Sk = {S1, . . . , S2k} of cuts for k = 3.

Moreover, we observe that for every i ∈ [2k], we have

y(δ(Si)) = 1 +
k

2
. (4.5)

The above implies that indeed, y ∈ Q. Now, consider a spanning tree T of Hk. We claim that for every
k ∈ Z>0, there exists i ∈ [2k] such that

|T ∩ δ(Si)| > k . (4.6)

Once we prove this, we can combine (4.5) and (4.6) to obtain that there exists i ∈ [2k] such that

|T ∩ δ(Si)| >
k

1 + k/2
· y(δ(Si)) =

(
2− 2

k + 2

)
· y(δ(Si)) .

By choosing k large enough such that ε > 2/(k + 2), we thus indeed obtain an instance satisfying the properties
listed in Theorem 4.31. It remains to prove the claim. To this end, we show the following stronger lemma.

Lemma 4.32. Let F be a subset of the edges of Hk such that any vertex wi,j of Hk is incident to at least
one edge of F . Then there exists i ∈ [2k] such that |F ∩ δ(Si)| > k.

Proof of Lemma 4.32. We proceed by induction on k. The statement of the base case k = 1 is directly
implied by the assumption on F . Indeed, at least one of the two edges {v0, w0,1} and {w0,1, v1} is in F ,
and correspondingly, at least one of |F ∩ δ(S1)| > 1 or |F ∩ δ(S2)| > 1 holds.

For the inductive step, let k > 2 and consider the graph Hk = (V,E). By the assumption on F , at
least one of the edges {v0, w0,2k−1} and {w0,2k−1 , v2k−1} is in F . By symmetry, we can assume without
loss of generality that {v0, w0,2k−1} ∈ F . Observe that the subgraph of Hk induced by the vertex set
V0 := {vi | i 6 2k−2} ∪ {wi,j | i, j 6 2k−2} is isomorphic to Hk−1, and F ∩ E[V0] has an edge
incident to every vertex wi,j of this copy of Hk−1. Hence, by induction, there exists i ∈ [2k−1] such that
|(F ∩E[V0])∩ δ(Si)| > k− 1. As additionally, {v0, w0,2k−1} ∈ δ(Si), this implies |F ∩ δ(Si)| > k.

Finally, observe that by connectivity, every spanning tree T of Hk contains at least one edge incident to wi,j ,
for all vertices wi,j of Hk. Consequently, Lemma 4.32 does indeed imply existence of i ∈ [2k] such that
|T ∩ δ(Si)| > k. This completes the proof of Theorem 4.31.

109

4 A new dynamic programming approach for spanning trees with chain constraints and beyond

Appendix 4.B Analyzing the DP by backtracing OPT fails in the general
case

The aim of this section is to extend an example from Section 4.5 which showed that the analysis of our
dynamic programming approach cannot be done in the classical way, i.e., by backtracing an optimal solution.
While the issues in the example constructed in Section 4.5 can be fixed by breaking ties in the right way, we
now present a slightly more involved instance (see Fig. 4.6) where the naive approach faces problems that
cannot be avoided easily.

S1 S2

u1

v1

w1

u2

v2

w2

laminar family L

c(e) = 1

c(e) = 0

aS
1

= 0, bS
1

= 3

aS
2

= 0, bS
2

= 3

a = 0, b = 2

Figure 4.6: An instance of the MLCST problem: The laminar family L is given by the blue sets, with lower
and upper bounds indicated on the right. Edge costs c : E → R>0 are 0 on all edges except for c((v1, w1)) =
c((u2, v2)) = 1.

The problem instance in Fig. 4.6 is very similar to the instance discussed in Section 4.5 (Fig. 4.3). While
the latter had edges (ui, wi) for i ∈ {1, 2}, the vertices ui and wi are connected by an auxiliary graph in the
new instance. This auxiliary graph has the following two crucial properties:

(i) The auxiliary graph does not contain a spanning tree that satisfies the laminar constraints.
(ii) The spanning tree polytope of the auxiliary graph contains a point that satisfies the laminar constraints.

In other words, the two properties state that it is possible to “fractionally connect” ui and wi in the auxiliary
graph, while an integral solution cannot connect ui and wi through the auxiliary graph. In particular, this
implies that any feasible integral solution will use both edges (v1, w1) and (u2, v2), and thus have cost at
least 2. One such integral solution is given in Fig. 4.7a. Observe that no matter how we choose an integral
solution, the connectivity patterns induced on the sets S1 and S2 will always be (S1, F1, C1) and (S2, F2, C2),
respectively, as indicated in Fig. 4.7a.

u1

v1

w1

u2

v2

w2

u′1

v′1

w′
1

u′2

v′2

w′
2

C1 C2
OPT F1 F2

(a) An optimal integral solution with induced connectivity
triples (S1, F1, C1) and (S2, F2, C2) on S1 and S2.

u1

v1

w1

u2

v2

w2

u′1

v′1

w′
1

u′2

v′2

w′
2

C1 C2
y(S

i
,F

i
,C

i
)(e) = 1/2 y(S

i
,F

i
,C

i
)(e) = 1

(b) Fractional solutions y(S
i
,F

i
,C

i
) ∈ PST(Si, Fi, Ci) that

can not be completed to a global solution.

Figure 4.7: Optimal integral and partial fractional solutions connect vertices differently inside S1 and S2.

110

4.B Analyzing the DP by backtracing OPT fails in the general case

To analyze our DP approach by classical backtracing of an optimal solution, our goal would be to find
partial solutions y(Si,Fi,Ci) ∈ PST(Si, Fi, Ci) for i ∈ {1, 2}, and show that a common extension of these
solutions has smaller value than the actual optimal solution we started with. In our example, however,
property (ii) of the auxiliary graph allows for partial fractional solutions y(Si,Fi,Ci) that differ substantially
from integral solutions in terms of connectivity. More precisely, the two fractional solutions y(S1,F1,C1) and
y(S2,F2,C2) given in Fig. 4.7b are both of cost 0 (and hence optimal), but there does not exist a common
extension that is feasible for the natural linear relaxation of our problem instance at all.

There is one last caveat that has to be addressed: Our dynamic program is designed to construct partial
solutions inside all small cuts of the laminar family for any choice of edges in the small cuts and corresponding
connectivity patterns, and it always extends previously found solutions. Above, the threshold τ for deciding
whether a cut is small was implicitly assumed to be at least 3 so that both S1 and S2 are small cuts. In the
particular example, this implies that all the other cuts in L (which are precisely the singleton cuts) would be
small cuts, as well, forcing our dynamic program to first construct partial solutions in these small cuts and
only then extend to S1 and S2. This would inevitably lead to integral partial solutions, hence we do need a
setting where the singleton cuts are large cuts.

To achieve this, we introduce dummy edges that increase the number of edges in the singleton cuts of
L. More precisely, for any given threshold τ and every small singleton cut {x} ∈ L, we can modify the
problem instance as follows to turn {x} into a large cut: Introduce new vertices x1, . . . , xτ and edges {x, xi}
for 1 6 i 6 τ , and increase the bounds a{x} and b{x} by τ . Feasible solutions of the old and the new instance
are in one-to-one correspondence and can be transformed into one another by adding or removing all the
edges {x, xi}, which are obviously part of any feasible solution of the new instance.

To conclude, by introducing dummy edges in the graph given in Fig. 4.6 as described above, we obtain an
instance where an analysis of our DP approach by backtracing an optimal solution fails inevitably, thus again
emphasizing the importance of our novel approach.

111

Bibliography

[AEGOVW16] S. Artmann, F. Eisenbrand, C. Glanzer, T. Oertel, S. Vempala, and R. Weismantel. “A note
on non-degenerate integer programs with small sub-determinants”. In: Operations Research
Letters 44.5 (2016), pp. 635–639.

[AF21] M. Aprile and S. Fiorini. “Regular Matroids Have Polynomial Extension Complexity”. In:
Mathematics of Operations Research (2021). To appear.

[AGMOS10] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. “An
O(log n/ log logn)-approximation Algorithm for the Asymmetric Traveling Salesman
Problem”. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA ’10). Austin, 2010, pp. 379–389.

[AKS15] H.-C. An, R. Kleinberg, and D. B. Shmoys. “Improving Christofides’ Algorithm for the s-t
Path TSP”. In: Journal of the ACM 62.5 (2015), 34:1–34:28.

[Art20] S. Artmann. “Optimization of bimodular integer programs and feasibility for three-modular
base block IPs”. PhD thesis. ETH Zurich, 2020.

[AWZ17] S. Artmann, R. Weismantel, and R. Zenklusen. “A Strongly Polynomial Algorithm for
Bimodular Integer Linear Programming”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC ’17). Montreal, 2017, pp. 1206–1219.

[BC87] F. Barahona and M. Conforti. “A construction for binary matroids”. In: Discrete Mathemat-
ics 66.3 (1987), pp. 213–218.

[BDEHN14] N. Bonifas, M. Di Summa, F. Eisenbrand, N. Haehnle, and M. Niemeier. “On Sub-det-
erminants and the Diameter of Polyhedra”. In: Discrete Computational Geometry 52.1
(2014), pp. 14. 102–115.

[Ben95] A. A. Benczúr. “A Representation of Cuts Within 6/5 Times the Edge Connectivity with
Applications”. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’95). Milwaukee, 1995, pp. 92–102.

[BFMR14] A. A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas. “Solving the Stable Set
Problem in Terms of the Odd Cycle Packing Number”. In: Proceedings of the 34th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS ’14). New Delhi, 2014, pp. 187–198.

[BHKP08] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. “Fast Edge Splitting and Edmonds’
Arborescence Construction for Unweighted Graphs”. In: Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’08). San Francisco, 2008, pp. 455–
464.

113

Bibliography

[BK98] A. A. Benczúr and D. R. Karger. “Augmenting Undirected Edge Connectivity in O(n2)
Time”. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’98). San Francisco, 1998, pp. 500–509.

[BKKNP13] N. Bansal, R. Khandekar, J. Könemann, V. Nagarajan, and B. Peis. “On generalizations of
network design problems with degree bounds”. In: Mathematical Programming, Series A
141 (2013), pp. 479–506.

[BKN09] N. Bansal, R. Khandekar, and V. Nagarajan. “Additive guarantees for degree-bounded
directed network design”. In: SIAM Journal on Computing 39.4 (2009), pp. 1413–1431.

[BT97] D. Bertsimas and C. Teo. “The parsimonious property of cut covering problems and its
applications”. In: Operations Research Letters 21.3 (1997), pp. 123–132.

[CFG15] J. Cheriyan, Z. Friggstad, and Z. Gao. “Approximating Minimum-Cost Connected T -Joins”.
In: Algorithmica 72 (2015), pp. 126–147.

[CFHJW20] M. Conforti, S. Fiorini, T. Huynh, G. Joret, and S. Weltge. “The stable set problem in
graphs with bounded genus and bounded odd cycle packing number”. In: Proceedings of
the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’20). Salt Lake
City, 2020, pp. 2896–2915.

[CFHW21] M. Conforti, S. Fiorini, T. Huynh, and S. Weltge. “Extended formulations for stable set
polytopes of graphs without two disjoint odd cycles”. In: Mathematical Programming
(2021). To appear.

[CGM92] P. M. Camerini, G. Galbiati, and F. Maffioli. “Random Pseudo-Polynomial Algorithms for
Exact Matroid Problems”. In: Journal of Algorithms 13 (1992), pp. 258–273.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the Travelling Salesman Problem.
Technical Report 388. Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

[Cla] Clay Mathematics Institute. Millenium Problems: The P vs NP Problem. https://www.
claymath.org/millennium-problems/p-vs-np-problem, accessed September 07, 2021.

[CRRT09a] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. “A push-relabel approximation
algorithm for approximating the minimum-degree MST problem and its generalization to
matroids”. In: Theoretical Computer Science 410 (44 2009), pp. 4489–4503.

[CRRT09b] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. “What would Edmonds Do? Aug-
menting paths and witnesses for degree-bounded MSTs”. In: Algorithmica 55 (1 2009),
pp. 157–189.

[CVZ09] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent Randomized Rounding for Matroid
Polytopes and Applications. 2009. arXiv: 0909.4348 [cs.DS].

[CVZ10] C. Chekuri, J. Vondrák, and R. Zenklusen. “Dependent Randomized Rounding via Exchange
Properties of Combinatorial Structures”. In: 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’10). Las Vegas, 2010, pp. 575–584.

[CXY18] K. Chandrasekaran, C. Xu, and X. Yu. “Hypergraph k-Cut in Randomized Polynomial
Time”. In: Proceedings of the 29th Annual Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’18). New Orleans, 2018, pp. 1426–1438.

[DEFM15] M. Di Summa, F. Eisenbrand, Y. Faenza, and C. Moldenhauer. “On Largest Volume Sim-
plices and Sub-determinants”. In: Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’15). San Diego, 2015, pp. 315–323.

[DK14] M. Dinitz and G. Kortsarz. “Matroid Secretary for Regular and Decomposable Matroids”.
In: SIAM Journal on Computing 43.5 (2014), pp. 1807–1830.

114

https://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.claymath.org/millennium-problems/p-vs-np-problem
https://arxiv.org/abs/0909.4348

Bibliography

[Edm71] J. Edmonds. “Matroids and the Greedy Algorithm”. In: Mathematical Programming 1.1
(1971), pp. 127–136.

[EJ73] J. Edmonds and E. L. Johnson. “Matching, Euler tours and the Chinese postman”. In:
Mathematical Programming 5.1 (1973), pp. 88–124.

[EV17] F. Eisenbrand and S. Vempala. “Geometric random edge”. In: Mathematical Programming
164.1 (2017), pp. 325–339.

[FJWY21] S. Fiorini, G. Joret, S. Weltge, and Y. Yuditsky. Integer programs with bounded subdetermi-
nants and two nonzeros per row. 2021. arXiv: 2106.05947 [math.CO].

[Fra92] A. Frank. “Augmenting graphs to meet edge-connectivity requirements”. In: SIAM Journal
on Discrete Mathematics 5.1 (1992), pp. 25–53.

[Gab94] H. N. Gabow. “Efficient Splitting off Algorithms for Graphs”. In: Proceedings of the 26th
Annual ACM SIGACT Symposium on Theory of Computing (STOC ’94). 1994, pp. 696–705.

[GH61] R. E. Gomory and T. C. Hu. “Multi-Terminal Network Flows”. In: Journal of the Society
for Industrial and Applied Mathematics 9.4 (1961), pp. 551–570.

[GKS95] J. W. Grossman, D. M. Kulkarni, and I. E. Schochetman. “On the minors of an incidence
matrix and its Smith normal form”. In: Linear Algebra and its Applications 218 (1995),
pp. 213–224.

[GLS84] M. Grötschel, L. Lovász, and A. Schrijver. “Corrigendum to our paper ‘The ellipsoid
method and its consequences in combinatorial optimization’”. In: Combinatorica 4.4
(1984), pp. 291–295.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization. 2nd. Vol. 2. Algorithms and combinatorics. Springer, 1993.

[God04] L. A. Goddyn. Some Open Problems I Like. http://people.math.sfu.ca/∼goddyn/Problems/
problems.html. 2004.

[Goe06] M. X. Goemans. “Minimum bounded degree spanning trees”. In: 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’06). Berkeley, 2006, pp. 273–
282.

[GR95] M. X. Goemans and V. S. Ramakrishnan. “Minimizing Submodular Functions over Families
of Sets”. In: Combinatorica 15.4 (1995), pp. 499–513.

[GSW21] C. Glanzer, I. Stallknecht, and R. Weismantel. “On the Recognition of {a, b, c}-Modular
Matrices”. In: Proceedings of the 22nd Conference on Integer Programming and Combina-
torial Optimization (IPCO ’21). Atlanta, 2021, pp. 238–251.

[GV16] C. Gottschalk and J. Vygen. “Better s-t-Tours by Gao Trees”. In: Proceedings of 18th Con-
ference on Integer Programming and Combinatorial Optimization (IPCO). 2016, pp. 126–
137.

[Kar93] D. R. Karger. “Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-
Cut Algorithm”. In: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’93). Austin, 1993, pp. 21–30.

[Kho06] S. Khot. “Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite
Clique”. In: SIAM Journal on Computing 36.4 (2006), pp. 1025–1071.

[KKG21] A. R. Karlin, N. Klein, and S. O. Gharan. “A (slightly) improved approximation algorithm
for metric TSP”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing (STOC ’21). Rome, 2021, pp. 32–45.

115

https://arxiv.org/abs/2106.05947
http://people.math.sfu.ca/~goddyn/Problems/problems.html
http://people.math.sfu.ca/~goddyn/Problems/problems.html

Bibliography

[KKR12] K. Kawarabayashi, Y. Kobayashi, and B. Reed. “The disjoint paths problem in quadratic
time”. In: Journal of Combinatorial Theory, Series B 102.2 (2012), pp. 424–435.

[KR00] J. Könemann and R. Ravi. “A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees”. In: Proceedings of the 32nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC ’00). 2000, pp. 537–546.

[KR03] J. Könemann and R. Ravi. “Primal-dual meets local search: Approximating MSTs with
nonuniform degree bounds.” In: Proceedings of the 35th Annual ACM SIGACT Symposium
on Theory of Computing (STOC ’03). 2003, pp. 389–395.

[KS96] D. R. Karger and C. Stein. “A new approach to the minimum cut problem”. In: Journal of
the ACM 43.4 (1996), pp. 601–640.

[KV18] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. 6th. Springer,
2018.

[Len83] H. W. Lenstra. “Integer Programming with a Fixed Number of Variables”. In: Mathematics
of Operations Research 8.4 (1983), pp. 538–548.

[Lov76] L. Lovász. “On some connectivity properties of Eulerian graphs”. In: Acta Mathematica
Academiae Scientiarum Hungarica 28.1 (1976), pp. 129–138.

[Lov79] L. Lovász. Combinatorial Problems and Exercises. Amsterdam: North-Holland, 1979.

[LPSX20] J. Lee, J. Paat, I. Stallknecht, and L. Xu. “Improving Proximity Bounds Using Sparsity”.
In: Proceedings of the 6th International Symposium on Combinatorial Optimization (ISCO

’20). Montreal, 2020, pp. 115–127.

[LPSX21] J. Lee, J. Paat, I. Stallknecht, and L. Xu. Polynomial upper bounds on the number of
differing columns of ∆-modular integer programs. 2021. arXiv: 2105.08160 [math.OC].

[LS16] A. Linhares and C. Swamy. “Approximating min-cost chain-constrained spanning trees: A
reduction from weighted to unweighted problems”. In: Proceedings of the 18th Conference
on Integer Programming and Combinatorial Optimization (IPCO ’16). Liège, 2016.

[LY13] L. Lau and C. Yung. “Efficient Edge Splitting-Off Algorithms Maintaining All-Pairs Edge-
Connectivities”. In: SIAM Journal on Computing 42.3 (2013), pp. 1185–1200.

[Mad78] W. Mader. “A Reduction Method for Edge-Connectivity in Graphs”. In: Annals of Discrete
Mathematics 3 (1978), pp. 145–164.

[Mar91] R. Martin. “Using separation algorithms to generate mixed integer model reformulations”.
In: Operations Research Letters 10.3 (1991), pp. 119–128.

[Meg79] N. Megiddo. “Combinatorial Optimization with Rational Objective Functions”. In: Mathe-
matics of Operations Research 4.4 (1979), pp. 414–424.

[Meg83] N. Megiddo. “Applying Parallel Computation Algorithms in the Design of Serial Algo-
rithms”. In: Journal of the ACM 30.4 (1983), pp. 852–865.

[NI00] S. Nagamochi H. and Nakamura and T. Ibaraki. “A SimplifiedO(nm) Time Edge-Splitting
Algorithm in Undirected Graphs”. In: Algorithmica 26.1 (2000), pp. 50–67.

[NI94] K. Nagamochi H. and Nishimura and T. Ibaraki. “Computing all small cuts in undirected
networks”. In: International Symposium on Algorithms and Computation (ISAAC). 1994,
pp. 190–198.

[NI96] H. Nagamochi and T. Ibaraki. “Deterministic O(nm) Time Edge-splitting in Undirected
Graphs”. In: Proceedings of the 28th Annual ACM SIGACT Symposium on Theory of
Computing (STOC ’96). Philadelphia, 1996, pp. 64–73.

116

https://arxiv.org/abs/2105.08160

Bibliography

[Nik15] A. Nikolov. “Randomized Rounding for the Largest Simplex Problem”. In: Proceedings of
the 47th Annual ACM SIGACT Symposium on Theory of Computing (STOC ’15). Portland,
2015, pp. 861–870.

[NNI97] H. Nagamochi, K. Nishimura, and T. Ibaraki. “Computing all small cuts in an undirected
network”. In: SIAM Journal in Discrete Mathematics 10.3 (1997), pp. 469–481.

[NSZ19] M. Nägele, B. Sudakov, and R. Zenklusen. “Submodular Minimization Under Congruency
Constraints”. In: Combinatorica 39.6 (2019), pp. 1351–1386.

[NSZ21] M. Nägele, R. Santiago, and R. Zenklusen. Congruency-Constrained TU Problems Beyond
the Bimodular Case. 2021. arXiv: 2109.03148 [math.OC].

[NZ19a] M. Nägele and R. Zenklusen. “A new contraction technique with applications to congruen-
cy-constrained cuts”. In: Proceedings of the 20th Conference on Integer Programming and
Combinatorial Optimization (IPCO ’19). Ann Arbor, 2019, pp. 327–340.

[NZ19b] M. Nägele and R. Zenklusen. “A new dynamic programming approach for spanning
trees with chain constraints and beyond”. In: Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’19). San Diego, 2019, pp. 1550–1569.

[NZ20] M. Nägele and R. Zenklusen. “A new contraction technique with applications to congruen-
cy-constrained cuts”. In: Mathematical Programming 183 (2020), pp. 455–481.

[OZ18] N. Olver and R. Zenklusen. “Chain-Constrained Spanning Trees”. In: Mathematical Pro-
gramming 167.2 (2018), pp. 293–314.

[PR82] M. W. Padberg and M. R. Rao. “Odd Minimum Cut-Sets and b-Matchings”. In: Mathematics
of Operations Research 7.1 (1982), pp. 67–80.

[PSW21] J. Paat, M. Schlöter, and R. Weismantel. “The integrality number of an integer program”.
In: Mathematical Programming (2021). To appear.

[Sch03] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer, 2003.

[Sch98] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[Seb13] A. Sebő. “Eight-Fifth Approximation for the path TSP”. In: Proceedings of 16th Conference
on Integer Programming and Combinatorial Optimization (IPCO). 2013, pp. 263–373.

[Sey80] P. D. Seymour. “Decomposition of regular matroids”. In: Journal of Combinatorial Theory,
Series B 28.3 (1980), pp. 305–359.

[SL07] M. Singh and L. C. Lau. “Approximating minimum bounded degree spanning trees to
within one of optimal”. In: Proceedings of the 39th Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’07). ACM, 2007, pp. 661–670.

[STV18] O. Svensson, J. Tarnawski, and L. A. Végh. “A Constant-Factor Approximation Algorithm
for the Asymmetric Traveling Salesman Problem”. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’18). 2018, pp. 204–213.

[SZ16] A. Sebő and A. van Zuylen. “The Salesman’s Improved Paths: A 3/2 + 1/34 Approxi-
mation”. In: Proceedings of 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’16). New Brunswick, 2016, pp. 118–127.

[Tar86] É. Tardos. “A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs”.
In: Operations Research 34.2 (1986), pp. 250–256.

[TV18] V. Traub and J. Vygen. “Approaching 3
2 for the s-t path TSP”. In: Proceedings of the 29th

ACM-SIAM Symposium on Discrete Algorithms (SODA). 2018, pp. 1854–1864.

117

https://arxiv.org/abs/2109.03148

Bibliography

[TV20] V. Traub and J. Vygen. “An improved approximation algorithm for ATSP”. In: Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, (STOC ’20).
Chicago, 2020, pp. 1–13.

[TVZ20] V. Traub, J. Vygen, and R. Zenklusen. “Reducing path TSP to TSP”. In: Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, (STOC ’20). Chicago,
2020, pp. 14–27.

[VC09] S. I. Veselov and A. J. Chirkov. “Integer program with bimodular matrix”. In: Discrete
Optimization 6.2 (2009), pp. 220–222.

[Vyg16] J. Vygen. “Reassembling Trees for the Traveling Salesman”. In: SIAM Journal on Discrete
Mathematics 30.2 (2016), pp. 875–894.

[Wol80] L. A. Wolsey. “Heuristic analysis, linear programming and branch and bound”. In: Mathe-
matical Programming Studies 13 (1980), pp. 121–134.

[Zen12] R. Zenklusen. “Matroidal degree-bounded minimum spanning trees”. In: Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12). 2012,
pp. 1512–1521.

[Zen19] R. Zenklusen. “A 1.5-Approximation for Path TSP”. In: Proceedings of the 30th ACM-
SIAM Symposium on Discrete Algorithms (SODA ’19). San Diego, 2019, pp. 1539–1549.

118

	Introduction
	Congruency-constrained TU problems beyond the bimodular case
	Introduction
	Our results
	Related work
	Organization of the chapter

	Overview of our approach
	Decomposition, flat directions, and proximity
	Overview of our approach to R-CCTUF problems and Theorem 2.2

	Proof and further implications of the decomposition lemma
	An alternative approach to R-CCTUF problems with |R|=m-1: Proving Theorem 2.3
	Bounded scalar products
	Proof of the decomposition lemma (Lemma 2.7) and Lemma 2.9

	Solving base block problems
	Network matrices
	Transposes of network matrices
	Matrices stemming from particular constant-size matrices

	Further details of our approach to R-CCTUF problems
	Seymour's decomposition of TU matrices
	Patterns
	Proof of Theorem 2.22
	Proof of Theorem 2.19
	Proof of Theorem 2.23

	Detecting unboundedness of CCTU problems

	A new contraction technique with applications to congruency-constrained cuts
	Introduction
	Our results
	Further discussion on related results
	Organization of the chapter

	An overview of our approach
	Good contraction distributions through splitting-off
	Proof of Theorem 3.9

	Further structural properties and their implications
	Proof of Theorem 3.12

	Weaker contraction distributions from standard splitting techniques

	A new dynamic programming approach for spanning trees with chain constraints and beyond
	Introduction
	Our results
	Organization of the chapter

	Overview of our approach for MCCST
	The dynamic programming approach for MCCST
	Brief overview to find cheap one-integral solution following prior techniques
	Toward general tau with connectivity patterns and resulting challenges
	Efficiently extending subsolutions through relaxed connectivity requirements
	Details of the dynamic programming approach for MCCST

	Local correction steps for rounding procedures in 0,1-polytopes
	Proof of Theorem 4.14
	Further applications of alteration technique
	Alternative approach to avoid 1+epsilon loss via techniques of Linhares and Swamy

	Extension to MLCST
	Dynamic programming in the laminar case
	Analyzing the DP

	Implications in Path TSP and beyond
	Christofides' algorithm and Wolsey's analysis
	Obtaining tau-odd points via our DP

	Weakness of the natural relaxation
	Analyzing the DP by backtracing OPT fails in the general case

	Bibliography

