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Abstract

The aim of this bachelor thesis is to explore various aspects of the Lovász Local
Lemma, a powerful tool from the area of probabilistic combinatorics.
We introduce and prove the Lovász Local Lemma and some of its variants in Chap-
ter 1, preparing their application in the subsequent chapters. More precisely, be-
sides the standard Local Lemma, we introduce the so-called lopsided Local Lemma
and their respective symmetric versions. Moreover, we present a variation giving
upper instead of lower bounds for the probability in question.
In Chapter 2, we study a result of Alon, Krivelevich and Sudakov on the chromatic
number of graphs with sparse neighbourhoods [1]. Amongst others, the symmetric
Lovász Local Lemma is applied iteratively to gradually split a given graph into
well-behaved subgraphs.
Chapter 3 establishes a basis for applications of the lopsided Local Lemma in the
probability spaces of random matchings in complete bipartite graphs and cliques,
which is due to Lu and Székely [11, 12]. Using the developed machinery, we prove
a sufficient condition for disjointly packing two hypergraphs into a complete hy-
pergraph. Surprisingly, by combining the lopsided Local Lemma and the variation
giving upper bounds, this framework can also be used for asymptotic counting,
which we apply to the asymptotic enumeration of d-regular graphs.
The last chapter, Chapter 4, is devoted to algorithmic aspects of the Local Lemma.
We study a rather general algorithmic proof of the Local Lemma by Moser and Tar-
dos [17] before exploring a successful algorithmic approach to acyclic edge colour-
ings using entropy compression by Esperet and Parreau [7].

Zusammenfassung

Das Ziel dieser Bachelorarbeit ist es, verschiedene Aspekte des Lovász Local Lemma
zu beleuchten.
Das Lovász Local Lemma und einige Varianten davon werden in Kapitel 1 ein-
geführt, um die Anwendungen in späteren Kapiteln vorzubereiten. Neben dem
gewöhnlichen Lemma betrachten wir das sogenannte lopsided Local Lemma sowie
symmetrische Varianten davon. Zusätzlich wird eine Variation präsentiert, die eine
obere Schranke für die gefragte Wahrscheinlichkeit angibt.
In Kapitel 2 betrachten wir ein Resultat von Alon, Krivelevich und Sudakov über
die chromatische Zahl von Graphen, in denen jede Nachbarschaft nur wenige Kan-
ten enthält [1]. Hier wird das Lovász Local Lemma unter anderem iterativ an-
gewendet, um einen gegebenen Graphen Schritt für Schritt in Teilgraphen mit
bestimmten Eigenschaften zu zerlegen.
Kapitel 3 bildet eine Basis für Anwendungen des lopsided Local Lemma in Wahr-
scheinlichkeitsräumen von Zufallsmatchings in vollständigen und vollständigen bi-
partiten Graphen, die von Lu und Székely [11, 12] entwickelt wurde. Darauf aufbau-
end werden zwei Resultate präsentiert: Einerseits hinreichende Bedingungen für die
disjunkte Einbettung zweier Hypergraphen in einen vollständigen Hypergraphen,
andererseits erlaubt die gegebene Konfiguration eine asymptotische Bestimmung
der Anzahl d-regulärer Graphen.
Das letzte Kapitel, Kapitel 4, ist algorithmischen Aspekten des Lovász Local Lem-
ma gewidmet. Neben einem relativ allgemeinen algorithmischen Beweis des Lem-
mas von Moser und Tardos [17] wird ein erfolgreicher algorithmischer Zugang zu
azyklischen Kantenfärbungen in Graphen präsentiert, der von Esperet und Parreau
[7] gefunden wurde.
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Chapter 1

The Lovász Local Lemma and its
Variants

In applications of the probabilistic method, one usually wants to prove that a ran-
dom object in some probability space has a positive probability of having certain
properties. If each of the properties appears with positive probability, then assum-
ing independence of the properties directly gives a positive probability of having all
the properties.

In the setting of the Lovász Local Lemma, the target object’s properties are given
as a list of events that we want to avoid, so the goal is to get a positive lower bound
for the probability of avoiding all the events. As before, the case of stochastically
independent properties does not require any effort while dependencies among the
properties forbid the immediate argument.

Nonetheless, under certain assumptions on the dependencies, it is still possible to
get a non-zero lower bound. This chapter presents various versions of the Lovász
Local Lemma, each stating sufficient conditions for a result of the described type to
hold.

1.1 The basic Local Lemma

Intuitively, a conclusion similar to the one stated in the introduction above should be
possible if there are only few dependencies among the forbidden properties. Indeed,
the following lemma concretises this idea.

Lemma 1.1 (Symmetric Lovász Local Lemma, [2]). Let A1, . . . , An be events
in an arbitrary probability space such that each event is mutually independent from
all except at most d of the others. Moreover, assume that Pr[Ai] 6 p for some
p ∈ [0, 1) and all i ∈ [n]. If ep(d + 1) 6 1, where e denotes the Euler number, then
Pr
[⋂n

i=1Ai
]
> 0.

We will derive this symmetric version from a more general version where the number
of dependencies per event is not uniformly bounded. The deduction is given on
page 4.
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1. The Lovász Local Lemma and its Variants

In order to collect information about mutual dependencies in a set of events, we use
the model of a dependency graph.

Definition 1.2. For events A1, . . . , An in a probability space, a dependency graph
of A1, . . . , An is a graph G = (V,E) with V = [n] such that for all j ∈ [n], the event
Aj is mutually independent from the events in {Ai | {i, j} 6∈ E}.

Using this definition, the condition that each event is mutually independent from all
but at most d of the others in Lemma 1.1 can be translated to the condition that
a dependency graph of A1, . . . , An has maximum degree at most d. In the general
Local Lemma, this uniform bound is replaced by different assumptions.

Note that the complete graph is always a dependency graph – but it does not con-
tain any information about mutual dependencies. On the other hand, an empty
dependency graph encodes that all events are mutually independent.

Lemma 1.3 (Lovász Local Lemma, [2]). Let A1, . . . , An be events in an arbi-
trary probability space with a dependency graph G. Assume that there are numbers
x1, . . . , xn such that for all i ∈ [n], we have 0 6 xi < 1 and

Pr[Ai] 6 xi ·
∏

j∈NG(i)
(1− xj). (1.1)

Then

Pr
[
n⋂
i=1

Ai

]
>

n∏
i=1

(1− xi), (1.2)

so in particular, with positive probability no event Ai occurs.

Proof. By iteratively applying the definition of conditional probability, we see that

Pr
[
n⋂
i=1

Ai

]
= Pr

[
An

∣∣∣∣∣
n−1⋂
i=1

Ai

]
· Pr

[
n−1⋂
i=1

Ai

]
= . . . =

=
n∏
j=1

Pr
[
Aj

∣∣∣∣∣
j−1⋂
i=1

Ai

]
=

n∏
j=1

1− Pr
[
Aj

∣∣∣∣∣
j−1⋂
i=1

Ai

] . (1.3)

Consequently, it suffices to prove Pr
[
Aj
∣∣∣ ⋂j−1

i=1 Ai
]
6 xj in order to conclude (1.2)

from (1.3). We prove a more general inequality, namely that for every j ∈ [n] and
every set I ⊆ [n], we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
6 xj . (1.4)

The proof is by fixing j and doing induction on |I|. If |I| = 0, we get the above
directly from the assumption:

Pr[Aj ] 6 xj ·
∏

i∈NG(j)
(1− xi) 6 xj .
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1.1. The basic Local Lemma

For the inductive step, assume we know the statement for all index sets of cardinality
smaller than the cardinality of a set I. Let I0 := I \NG(j) and I1 := I ∩NG(j) so
that we can write

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
= Pr

[
Aj

∣∣∣∣∣ ⋂
i∈I1

Ai ∩
⋂
i∈I0

Ai

]
. (1.5)

Note that if j ∈ I, then Pr
[
Aj
∣∣∣ ⋂i∈I Ai] = 0 , so the inequality (1.4) trivially holds.

Therefore, we may assume j /∈ I so that I0 is a set of indices such that Aj is mutually
independent from {Ai | i ∈ I0}.

For arbitrary events X, Y and Z in a probability space, the definition of conditional
probability gives

Pr[X ∩ Y ∩ Z] = Pr[X ∩ Y | Z] · Pr[Z] and Pr[Y ∩ Z] = Pr[Y | Z] · Pr[Z],

=⇒ Pr[X | Y ∩ Z] = Pr[X ∩ Y ∩ Z]
Pr[Y ∩ Z] = Pr[X ∩ Y | Z]

Pr[Y | Z] . (1.6)

Applying this to (1.5) with X = Aj , Y =
⋂
i∈I1 Ai and Z =

⋂
i∈I0 Ai, we get

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
=

Pr
[
Aj ∩

⋂
i∈I1 Ai

∣∣∣ ⋂i∈I0 Ai]
Pr
[⋂

i∈I1 Ai
∣∣∣ ⋂i∈I0 Ai] . (1.7)

We treat numerator and denominator separately. For the numerator, note that we
can first apply monotonicity of the probability measure and then use the fact that
the events Ai with i ∈ I0 are mutually independent from Aj . This gives

Pr
[
Aj ∩

⋂
i∈I1

Ai

∣∣∣∣∣ ⋂
i∈I0

Ai

]
6 Pr

[
Aj

∣∣∣∣∣ ⋂
i∈I0

Ai

]
= Pr[Aj ] 6 xj ·

∏
i∈NG(j)

(1− xi), (1.8)

where we used the assumption (1.1) in the last step. For the denominator, we let
I1 = {i1, . . . , ir} and iteratively apply (1.6) to get

Pr
[ ⋂
i∈I1

Ai

∣∣∣∣∣ ⋂
i0∈I0

Ai0

]
= Pr

[
Ai1 ∩ . . . ∩Air

∣∣∣∣∣ ⋂
i0∈I0

Ai0

]
=

= Pr
[
Ai1 ∩ . . . ∩Air−1

∣∣∣∣∣Air ∩ ⋂
i0∈I0

Ai0

]
· Pr

[
Air

∣∣∣∣∣ ⋂
i0∈I0

Ai0

]
= . . . =

=
r∏
`=1

Pr
[
Ai`

∣∣∣∣∣
r⋂

k=`+1
Aik ∩

⋂
i0∈I0

Ai0

]
=

r∏
`=1

1− Pr
[
Ai`

∣∣∣∣∣ ⋂
i∈I`+1

Ai

] ,
where I`+1 := {i`+1, . . . , ir} ∪ I0 for each ` ∈ [r] (with Ir+1 = I0, of course). Now
note that for each ` ∈ [r], |I`+1| < |I| because at least i1 /∈ I`+1. Hence the inductive
assumption can be applied, resulting in

r∏
`=1

1− Pr
[
Ai`

∣∣∣∣∣ ⋂
i∈I`+1

Ai

] > r∏
`=1

(1− xi`) >
∏

i∈NG(j)
(1− xi)

3



1. The Lovász Local Lemma and its Variants

because {i1, . . . , ir} = I1 ⊆ NG(j). Plugging the results for the numerator and
denominator into (1.7), we get

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
6
xj ·

∏
i∈NG(j)(1− xi)∏

i∈NG(j)(1− xi)
= xj ,

which is (1.4), so the inductive step and hence also the proof of the Lovász Local
Lemma is complete. �

Having the general statement of the Lovász Local Lemma (Lemma 1.3) at hand, we
can now deduce the symmetric version, Lemma 1.1.

Proof of Lemma 1.1. We show that the condition of Lemma 1.3 is satisfied for
the choice x1 = . . . = xn = 1

d+1 .

As already remarked, the condition that every event Ai is independent from all but
at most d of the others translates to having the maximal degree in the dependency
graph G for the events A1, . . . , An bounded from above by d. In other words, we
have |NG(i)| 6 d for all i ∈ [n], which gives

xi ·
∏

j∈NG(i)
(1− xj) = 1

d+ 1 ·
(

1− 1
d+ 1

)|NG(i)|
>

1
d+ 1 ·

(
1− 1

d+ 1

)d
.

By the well-known inequality 1 + x 6 ex, we have 1− 1
d+1 =

(
1 + 1

d

)−1
> e−1/d, so

we get
1

d+ 1 ·
(

1− 1
d+ 1

)d
>

1
e(d+ 1) > p > Pr[Ai],

where the last two inequalities are assumptions of Lemma 1.1. Combining the above
two chains of inequalities gives

Pr[Ai] 6 xi ·
∏

j∈NG(i)
(1− xj),

so the assumption of Lemma 1.3 is satisfied, giving the conclusion

Pr
[
n⋂
i=1

Ai

]
>

n∏
i=1

(1− xi) =
(

1− 1
d+ 1

)n
> 0

as desired. �

1.2 The Lopsided Local Lemma

There is an extension of the Lovász Local Lemma introduced by Erdős and Spencer
in [6] called the lopsided Local Lemma, which originates from a careful study of the
proof.

In fact, the only step that uses the assumption that G contains the information of
mutual dependencies among the events is the equality in (1.8). It would be enough

4



1.2. The Lopsided Local Lemma

to have the graph G such that for every j ∈ [n] and every index set I0 not containing
and any neighbours of j in G, we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I0

Ai

]
6 Pr[Aj ].

This gives rise to the following definition.

Definition 1.4 ([6]). For events A1, . . . , An in a probability space, a graph G =
(V,E) is called negative dependency graph for the events A1, . . . , An if V = [n] and
E is such that for all j ∈ V and all sets I ⊆ V \NG(j), we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
6 Pr[Aj ]

whenever the conditional probability on the left-hand side is well-defined.

Sometimes, a negative dependency graph is also called lopsided dependency graph.
As pointed out, having a negative dependency graph is enough to draw the conclusion
of the Lovász Local Lemma.

Lemma 1.5 (Lopsided Local Lemma). Let A1, . . . , An be events in an arbitrary
probability space with a negative dependency graph G. Assume that there are numbers
x1, . . . , xn such that for all i ∈ [n], we have 0 6 xi < 1 and

Pr[Ai] 6 xi ·
∏

j∈NG(i)
(1− xj).

Then

Pr
[
n⋂
i=1

Ai

]
>

n∏
i=1

(1− xi).

Proof. As already indicated, the proof of Lemma 1.5 is almost identical to the proof
of Lemma 1.3, the only difference being that the equation sign in (1.8) is replaced
by an inequality sign, justified by the assumption that G is a negative dependency
graph for A1, . . . , An. Therefore, we do not repeat the arguments here. �

Similarly to the case of the “standard” Lovász Local Lemma, the lopsided version
allows a specification to a symmetric version, given below.

Lemma 1.6 (Symmetric Lopsided Local Lemma, [6]). Let A1, . . . , An be
events in an arbitrary probability space with a negative dependency graph G of
maximum degree d. Moreover, assume that Pr[Ai] 6 p for some p ∈ [0, 1) and all
i ∈ [n]. If ep(d+ 1) 6 1, where e denotes the Euler number, then Pr

[⋂n
i=1Ai

]
> 0.

Proof. The symmetric lopsided Lovász Local Lemma can be derived from the lop-
sided Local Lemma by following the very same steps as when we derived the sym-
metric Lovász Local Lemma from the standard Local Lemma on page 4, so we do
not repeat the steps here. �
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1. The Lovász Local Lemma and its Variants

One thing that can easily be observed is that the lopsided Local Lemma indeed
generalises the “standard” Local Lemma.

Proposition 1.7. For events A1, . . . , An in an arbitrary probability space, a depen-
dency graph is also a negative dependency graph.

Proof. Let G be a dependency graph and fix j ∈ [n] and I ⊆ V \NG(i). If j ∈ I,
then

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
=

Pr
[
Aj ∩Aj ∩

⋂
i∈I\{j}Ai

]
Pr
[⋂

i∈I Ai
] = 0,

and the condition trivially holds. If j /∈ I, then Aj is independent from all Ai with
i ∈ I, hence

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
= Pr[Aj ],

so in this case the inequality constraints for G being a negative dependency graph
are satisfied with equality. �

In fact, the above proposition affirms that every dependency graph can be seen
as a negative dependency graph. However, the question of how to find non-trivial
negative dependency graphs, i. e. negative dependency graphs that are not already
dependency graphs, remains. In Chapter 3, we prove that if the probability space
consists of all maximum cardinality matchings in a complete or complete bipartite
graph, then certain so-called canonical events inherit a structure that allows defining
a natural negative dependency graph.

1.3 Local Lemma-type Upper Bounds

In some applications, for example those of asymptotic counting presented in Chap-
ter 3, it is also desirable to have upper bounds on the probability Pr

[⋂n
i=1Ai

]
. To

this end, Lu and Székely ([12]) introduced a framework that allows to prove such
bounds, starting with the following definition.

Definition 1.8 ([12]). For events A1, . . . , An in an arbitrary probability space and
an ε ∈ (0, 1), a graph G = (V,E) with V = [n] is an ε-near positive dependency
graph for the events A1, . . . , An if

(i) Pr[Ai ∩Aj ] = 0 for all {i, j} ∈ E.

(ii) For any j ∈ [n] and any subset I ⊆ V \ (NG(j) ∪ {j}), we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
> (1− ε) Pr[Aj ]

whenever the conditional probability on the left-hand side is well-defined.

Using this definition, the analogue of the Local Lemma giving upper bounds is the
following:

6



1.3. Local Lemma-type Upper Bounds

Lemma 1.9 ([12]). Let A1, . . . , An be events in an arbitrary probability space with
an ε-near positive dependency graph G = (V,E) for some ε ∈ (0, 1). Then we have

Pr
[
n⋂
i=1

Ai

]
6

n∏
i=1

(
1− (1− ε) Pr[Ai]

)
. (1.9)

Proof. If Pr
[⋂n

i=1Ai
]

= 0, then the statement is true for sure as every factor on the
right-hand side is non-negative. Otherwise, by iteratively applying the definition of
conditional probability, we get

Pr
[
n⋂
i=1

Ai

]
= Pr

[
A1

∣∣∣∣∣
n⋂
i=2

Ai

]
· Pr

[
n⋂
i=2

Ai

]
= . . . =

=
n∏
j=1

Pr
[
Aj

∣∣∣∣∣
n⋂

i=j+1
Ai

]
=

n∏
j=1

1− Pr
[
Aj

∣∣∣∣∣
n⋂

i=j+1
Ai

] . (1.10)

In order to derive the bound in (1.9) from (1.10), it is enough to show that we have
Pr
[
Aj
∣∣∣ ⋂ni=j+1Ai

]
> (1 − ε) Pr[Aj ]. We prove a more general inequality, namely

that for all j ∈ [n] and I ⊆ [n] \ j,

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
> (1− ε) Pr[Aj ]. (1.11)

Fix j and I and set I0 := I \ NG(j) and I1 := I ∩ NG(j). Applying the definition
of conditional probability (in fact, we can use (1.6) with X = Aj , Y =

⋂
i∈I1 Ai and

Z =
⋂
i∈I0 Ai), we get

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
=

Pr
[
Aj ∩

⋂
i∈I1 Ai

∣∣∣ ⋂i∈I0 Ai]
Pr
[⋂

i∈I1 Ai
∣∣∣ ⋂i∈I0 Ai] . (1.12)

For i ∈ I1, the definition of I1 provides {i, j} ∈ E(G), so by the first condition of an
ε-near positive dependency graph,

Pr
[
Aj ∩Ai

]
= Pr[Aj ]− Pr[Aj ∩Ai] = Pr[Aj ].

This extends to

Pr
[
Aj ∩

⋂
i∈I1

Ai

]
= Pr[Aj ]− Pr

[
Aj ∩

⋃
i∈I1

Ai

]
= Pr[Aj ]

and obviously also holds if the events are conditioned on
⋂
i∈I0 Ai, so

Pr
[
Aj ∩

⋂
i∈I1

Ai

∣∣∣∣∣ ⋂
i∈I0

Ai

]
= Pr

[
Aj

∣∣∣∣∣ ⋂
i∈I0

Ai

]
.

Plugging this into (1.12) and bounding the probability in the denominator from
above by 1 results in

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
> Pr

[
Aj

∣∣∣∣∣ ⋂
i∈I0

Ai

]
> (1− ε) Pr[Aj ].

7



1. The Lovász Local Lemma and its Variants

The last inequality follows from the second condition in the definition of an ε-near
positive dependency graph because I0 ⊆ I \NG(j) ⊆ [n]\ (NG(j)∪{j}). This proves
(1.11) and hence finishes the proof of Lemma 1.9. �

The purpose of Lemma 1.9 may not be obvious as it stands here for itself – in
fact, its strength comes from combination with the lower bound that we get in the
standard Local Lemma: In certain settings, the lower and upper bounds match
at least asymptotically, giving the option to actually count the number of objects
avoiding all events Aj . This is treated more concretely in Chapter 3.
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Chapter 2

Colouring Graphs with sparse
Neighbourhoods

The chromatic number χ(G) of a graph G is the minimal number of colours that are
necessary to colour all vertices of G without generating a monochromatic edge, i. e.
an edge with both endpoints of the same colour.

Calculating the chromatic number for a general graph G is an NP-hard problem
([10]), but there are lots of results bounding the chromatic number. The easiest one
is that if the graph G has maximum degree ∆, then χ(G) 6 ∆ + 1. Improvements
are possible if, for example, no neighbourhood of any vertex contains edges, i. e.
if the graph is triangle-free: Johansson ([9]) proved that under this assumption
χ(G) = O(∆/ log ∆), see Theorem 2.3.

Alon, Krivelevich and Sudakov ([1]) provide a result of similar spirit if the number
of edges in every neighbourhood is not zero but bounded from above by ∆2/f for
some f with 2 6 f 6 ∆2: They prove χ(G) = O(∆/ log f) in this case.

From a technical point of view, the key ingredient for their proof is the Lovász
Local Lemma. In particular, they use an interesting iterative approach, progressing
towards the final goal step by step. This chapter presents a proof of the mentioned
result by Alon, Krivelevich and Sudakov, closely following their exposition in [1].

2.1 Theorem Statement and Proof Outline

Theorem 2.1. There exists an absolute positive constant c such that the following
holds: For any graph G = (V,E) with maximum degree ∆ and an f with 2 6 f 6 ∆2

such that the neighbourhood NG(v) of every vertex v ∈ V spans at most ∆2/f edges,
the chromatic number satisfies

χ(G) 6 c · ∆
log f .

As indicated in the introduction, the theorem may be read as the asymptotic state-
ment χ(G) = O(∆/ log f) for |V | → ∞. All asymptotics in this section are with

9



2. Colouring Graphs with sparse Neighbourhoods

respect to the number of vertices going to infinity, so if there occur asymptotics
without further specification, they are understood in this sense.

The proof of Theorem 2.1 is split into the following two cases for a fixed ε > 0:

Case 1: f > ∆4ε.

Having f large corresponds to having a small number of edges in each neigh-
bourhood. Using the Lovász Local Lemma, we are going to split the graph
into Θ

(
∆1−ε/ε2) vertex-disjoint triangle-free induced subgraphs with a bound

of O(∆ε) on the maximum degree. For each of them, we can apply a result of
Johansson (Theorem 2.3) to get a colouring with O(∆ε/ log ∆ε) many colours.

Colouring each of the subgraphs from its own colour palette, we get a proper
colouring that asymptotically uses the desired number of colours.

This is elaborated in Section 2.2.

Case 2: f < ∆4ε.

This case corresponds to allowing many edges in each neighbourhood. As before,
the idea is to split the graph into vertex-disjoint pieces with the goal of getting
induced subgraphs that satisfy the assumption of Case 1.

By an application of the Lovász Local Lemma, we will be able to prove the exis-
tence of a splitting into two pieces such that each of them is “closer” to meeting
the conditions of Case 1 than the whole graph we started with. Iteratively ap-
plying this procedure, we will eventually be left with a system of subgraphs all
satisfying the conditions – hence colouring each of them from their own colour
palette by the construction in Case 1 is possible.

Last but not least, we will see that the number of colours stays in the bound of
O(∆/ log f) that we are aiming at.

This second case is covered by Section 2.3.

Besides just proving Theorem 2.1, it is also worth asking how tight the bound pro-
vided by the theorem is. One can prove that it is asymptotically tight, i. e. tight up
to the constant c. Section 2.4 is devoted to proving this fact.

2.2 The first Case: f > ∆4ε

We prove the following result:

Theorem 2.2. Let ε > 0 and let G = (V,E) be a graph with maximum degree ∆
in which the neighbourhood NG(v) of any vertex v ∈ V spans at most ∆2−4ε edges.
Then the chromatic number of G satisfies

χ(G) = O
( ∆
ε3 log ∆

)
.

Note that if we fix ε, then this is indeed a special case of Theorem 2.1 with the
additional restriction that f > ∆4ε, resulting in the bound of ∆2/f 6 ∆2−4ε for the
number of edges in each neighbourhood.

10



2.2. The first Case: f > ∆4ε

As already outlined, the proof of Theorem 2.2 builds upon a result of Johansson,
which is the following:

Theorem 2.3 (Johansson, [9]). If G is a triangle-free graph on n vertices with
maximum degree ∆, then

χ(G) = O
( ∆

log ∆

)
for n→∞.

Coincidentally, the proof of this theorem also uses the Lovász Local Lemma, but
nevertheless, we do not present it here and only refer to [15, Thm. 13.1].

The subsequent lemma is the key to establishing a setting in which we can apply
Theorem 2.3, it reveals a splitting of the graph into vertex-disjoint and triangle-free
induced subgraphs.

Lemma 2.4. Let ε ∈ (0, 1) and let G = (V,E) be a graph with maximum degree
at most ∆ in which the neighbourhood NG(v) of any vertex v ∈ V spans at most
∆2−4ε edges. Then there exists a partition of the vertex set V = V1∪̇ . . . ∪̇Vk with
k = Θ

(
∆1−ε/ε2) such that for any i ∈ [k], the induced subgraph G[Vi] is triangle-free

and has maximum degree O(∆ε).

Proof. Note that the given setting allows us to assume that ∆ is large enough
whenever we need it.

For a vertex v ∈ V , we call a neighbour u ∈ NG(v) a bad neighbour if u and v have
at least ∆1−2ε common neighbours, i. e. if |NG(u)∩NG(v)| > ∆1−2ε. Otherwise, we
call u a good neighbour.

We consider the probability space of all partitions of G into ∆1−ε parts so that a
random element in this space has each vertex assigned randomly and independently
to one of the parts. For each v ∈ V , define the following three events in this
probability space:

Av: Vertex v has at least 2∆ε neighbours inside its part of the partition.

Bv: Vertex v has more than 10/ε bad neighbours inside its part of the partition.

Cv: The set of good neighbours of v inside its part spans at least 100/ε2 edges.

We want to apply the symmetric Lovász Local Lemma, Lemma 1.1, to see that there
is a partition avoiding all events {Av, Bv, Cv | v ∈ V }.

To ensure that we satisfy the assumptions of Lemma 1.1, we first address mutual
dependencies. Thereto, fix a vertex v and note that each of the events Av, Bv and
Cv is determined by v and the vertices of distance one from v, so these events are
for sure mutually independent from all events corresponding to vertices of distance
more than two. As the maximum degree in G is at most ∆, there are at most
∆2 + ∆ vertices of distance at most two from v, so we may choose d = 3(∆2 + ∆) in
Lemma 1.1.

Moreover, we need to bound the probabilities of each of the events. To do so, fix a
vertex v again.
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2. Colouring Graphs with sparse Neighbourhoods

For Pr[Av], let X be the random variable counting the number of neighbours of
vertex v inside its part. Each of the |NG(v)| neighbours of v belongs to the same
part as v with probability 1/∆1−ε independently from the others, so X is binomially
distributed with parameters degG(v) and 1/∆1−ε.

We know that degG(v) 6 ∆, so E[X] = degG(v) · 1
∆1−ε 6 ∆ε. Applying the Chernoff

estimate (i) in Theorem A.1 with a = np = ∆ε, we get

Pr[X > 2∆ε] 6 e∆ε(1−2 log(2)) <
1

∆3 , (2.1)

where the second inequality holds for ∆ large enough because 1− 2 log(2) < 0.

To bound Pr[Bv], we first bound the total number of bad neighbours. If v has
b bad neighbours, then there are at least b

2∆1−2ε edges inside NG(v), so we get
b
2∆1−2ε 6 ∆2−4ε or equivalently b 6 2∆1−2ε.

For a given set of 10/ε bad neighbours of v, the probability that they all belong to
the same part as v is (1/∆1−ε)10/ε, so a union bound gives

Pr[Bv] 6
(

2∆1−2ε

10/ε

)
·
( 1

∆1−ε

) 10
ε

<

(
2∆1−2ε) 10

ε(
10
ε

)
!
· 1

(∆1−ε)
10
ε

=

= 210/ε(
10
ε

)
!
·∆−10 <

1
∆3 , (2.2)

where the last inequality again holds for ∆ large enough.

Last but not least, we bound Pr[Cv]. Let V0 be the set of good neighbours of v
inside its part. If G[V0] spans at least 100/ε2 edges, which is the event that we are
considering, then we claim that at least one of the following two situations occurs:
Either, there is a vertex of degree at least 9/ε or there is a matching of size at least
9/ε.

To see this, assume the maximum degree in G[V0] is smaller than 9/ε, i. e. there
is no vertex of degree at least 9/ε. Then Vizing’s theorem (see [4, Theorem 5.3.2])
provides that χ′(G[V0]) < 9

ε + 1, so in an optimal proper edge-colouring of G[V0],
there is a colour class of size at least

100
ε2

(9
ε

+ 1
)−1

= 100
9 + ε

· ε
ε2 >

9
ε
.

The inequality holds because ε 6 1. A colour class in a proper edge-colouring forms
a matching, so the claim follows.

Let C(1)
v and C

(2)
v be the events that the graph G[V0] contains a vertex of degree

at least 9/ε and that the graph G[V0] contains a matching of size at least 9/ε,
respectively. By the above claim, Cv ⊆ C(1)

v ∪ C(2)
v , hence a union bound gives

Pr[Cv] 6 Pr
[
C(1)
v

]
+ Pr

[
C(2)
v

]
,

so we aim for bounds on the two probabilities on the right-hand side.
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2.2. The first Case: f > ∆4ε

For any choice of a good neighbour u of v and 9/ε common neighbours of u and v,
the probability that both u and the common neighbours belong to the same part as
v is

(
1/∆1−ε)9/ε+1. Each event in C

(1)
v corresponds to at least one such choice of u

and the common neighbours of u and v, so a union bound gives

Pr
[
C(1)
v

]
6 ∆ ·

(
∆1−2ε

9
ε

)
·
( 1

∆1−ε

) 9
ε

+1
(2.3)

because there are at most ∆ choices for u as a good neighbour of v, and |NG(u) ∩
NG(v)| < ∆1−2ε, so there are less than

(∆1−2ε

9/ε
)

choices for the 9/ε common neigh-
bours.

By bounding the binomial coefficient in (2.3), we get

Pr
[
C(1)
v

]
< ∆ · ∆(1−2ε) 9

ε(
9
ε

)
!
·∆(ε−1)( 9

ε
+1) = ∆−9+ε(

9
ε

)
!
<

1
2∆−3,

where the last inequality holds for ∆ large enough.

A similar argument works for Pr
[
C

(2)
v

]
: Each event in C

(2)
v corresponds to at least

one choice of 9/ε disjoint edges spanned by the good neighbours of v and assigning
them to the part v belongs to. The probability for getting the desired assignment
under a random partition is

(
1/∆1−ε)18/ε because a matching of 9/ε edges has a

support of 18/ε vertices. Hence another union bound gives

Pr
[
C(2)
v

]
6

(
∆2−4ε

9
ε

)
·
( 1

∆1−ε

) 18
ε

, (2.4)

where the binomial coefficient bounds the number of possible matchings of size 9/ε in
the graph induced by the good neighbours of v because by assumption, the number
of edges in NG(v) is at most ∆2−4ε. Bounding the binomial coefficient in (2.4) gives

Pr
[
C(2)
v

]
<

∆(2−4ε) 9
ε(

9
ε

)
!
·∆(ε−1) 18

ε = ∆−18(
9
ε

)
!
<

1
2∆−3,

where the last inequality again holds for ∆ large enough.

Altogether, we get
Pr[Cv] 6 Pr

[
C(1)
v

]
+ Pr

[
C(2)
v

]
<

1
∆3 . (2.5)

The inequalities in (2.1), (2.2) and (2.5) show that all events in {Av, Bv, Cv | v ∈ V }
have probabilities smaller than ∆−3, so in order to apply Lemma 1.1, we may choose
p = ∆−3. The condition of Lemma 1.1 is ep(d+ 1) 6 1, which translates to

e · 1
∆3 · (3∆2 + 3∆ + 1) 6 1

in our setting. It is satisfied if ∆ is large enough, hence the symmetric Lovász Local
Lemma proves the existence of a partition of the vertices of G avoiding all the events
{Av, Bv, Cv | v ∈ V }. In other words, there exists a partition V = U1 ∪̇ . . . ∪̇U` with
` = ∆1−ε such that we have the following:
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2. Colouring Graphs with sparse Neighbourhoods

(i) For all i ∈ [`], G[Ui] has maximum degree at most 2dε.

(ii) For every i ∈ [`] and v ∈ Ui, there exists a set Sv,i ⊆ NG[Ui](v) of at most
110/ε2 vertices such that the vertices in NG[Ui](v) \ Sv,i span no edges.

The first point is simply a reformulation of avoiding all events Av. For the second,
fix i ∈ [l] and a vertex v ∈ Ui. Avoiding the event Bv means that v has at most
10/ε bad neighbours in Ui while avoiding Cv means that the set of good neighbours
of v spans at most 100/ε2 edges. So if we let Sv,i contain all bad neighbours of
v and one vertex of each edge spanned by the good neighbours of v, then |Sv,i| 6
10/ε+ 100/ε2 < 110/ε2 and NG(v) \ Sv,i spans no edges, as desired.

Now fix a part Ui of the partition. To colour Ui, we construct an auxiliary digraph
Di = (Ui, A) with arcs given by A := {(v, u) | v ∈ Ui, u ∈ Sv,i}. Item (ii) above
guarantees that for each v, |Sv,i| 6 110/ε2, so the outdegree of every vertex in the
digraph Di is at most 110/ε2.

We claim that the digraph Di is (220/ε2)-degenerate in total degrees: Indeed, if
there was an induced subgraph H with minimum total degree larger than 220/ε2,
counting edges in H would give

|E(H)| = 1
2
∑
v∈Ui

deg(v) >
∑
v∈Ui

110
ε2 >

∑
v∈Ui

deg+(v) = |E(H)|,

a contradiction. It is well-known that d-degenerate graphs can be properly coloured
using d+ 1 colours, so by the above, Di is (220/ε2 + 1)-colourable.

Fix such a proper colouring of the vertices in Ui with 220/ε2 + 1 colours and note
that using this colouring, there cannot be any monochromatic triangle in G[Ui]: If
v ∈ Ui and u1, u2 ∈ NG[Ui](v) span a triangle, then one of the ui belongs to Sv,i
by item (ii) above and hence has not the same colour as v, so the triangle is not
monochromatic.

Altogether, we can colour every one of the ∆1−ε parts from its own colour palette
with at most 220/ε2 + 1 colours, i. e. using

(
220
ε2 + 1

)
∆1−ε = Θ

(
∆1−ε

ε2

)
colours in

total, such that each colour class is triangle-free. Moreover, item (i) guarantees that
the maximum degree inside each colour class is at most 2∆ε = O(∆ε). So for the
conclusion of the lemma, we may choose the sets Vi to be the constructed colour
classes. �

With this lemma at hand, the conclusion of Theorem 2.2 is almost immediate:

Proof of Theorem 2.2. Lemma 2.4 partitions the vertices of the graph G into
k = Θ

(
∆1−ε/ε2) parts (Vi)i∈[k], inducing triangle-free subgraphs of maximum degree

O(∆ε). Applying Theorem 2.3, we see that for each i ∈ [k], we have

χ(G[Vi]) = O
( 2∆ε

log(2∆ε)

)
,

so colouring each set Vi with its own colours, we get the desired asymptotic bound

χ(G) = Θ
(

∆1−ε

ε2

)
· O
( 2∆ε

log(2∆ε)

)
= O

( ∆
ε3 log ∆

)
. �
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2.3. The second Case: f < ∆4ε

2.3 The second Case: f < ∆4ε

In the case of f < ∆4ε, we do not have the number of edges in a neighbourhood
bounded away from Θ

(
∆2) as before, which makes an argument as in Lemma 2.4

impossible. In particular, the bounds on Pr[Av], Pr[Bv] and Pr[Cv] rely heavily on
the gap introduced by the assumption f > ∆4ε.

Nonetheless, the ideas of the first case are useful for the second one in the sense that
we also aim for a splitting into vertex-disjoint induced subgraphs that are easier
to colour. In fact, the following lemma states that a reduction to the first case is
possible.

Lemma 2.5. Let ε ∈ (0, 1
6) and let G = (V,E) be a graph with maximum degree ∆

in which the neighbourhood NG(v) of any vertex v ∈ V spans at most ∆2/f edges for
some f < ∆4ε. There exists an absolute constant f0 such that the following holds
whenever f > f0: Let j be the smallest positive integer such that

f >
(8∆

2j
)ε
.

Then G can be split into at most 2j vertex-disjoint induced subgraphs such that in
each of them, either the maximum degree is at most one, or the maximum degree is
at most 8∆

2j and the neighbourhood of each vertex spans at most 8∆
2j /f vertices.

Indeed, one can observe that Theorem 2.2 applies to each of the subgraphs provided
by the above lemma. In Theorem 2.7, we will see that colouring each of the subgraphs
from their own colour palette completes the proof of the second case.

In order to prove Lemma 2.5, we iteratively split the graph into smaller pieces, at
each step coming closer to the desired bounds on the degrees and the number of
edges in neighbourhoods. Lemma 2.6 provides the details for a single step.

Lemma 2.6. Let G = (V,E) be a graph on n vertices with maximum degree d > 2
in which the neighbourhood NG(v) of any vertex v ∈ V spans at most s edges. Then
there exists a partition V = V1 ∪̇V2 such that for i ∈ {1, 2}, the induced subgraph
G[Vi] has maximum degree at most d′ and the neighbourhood NG[Vi](v) of each vertex
v ∈ Vi spans at most s′ edges, where

d′ = d

2 + 2
√
d log d and s′ = s

4 + 4d3/2√log d.

Proof. We prove that a random partition of V into two sets V1, V2 has the de-
sired properties with positive probability by an application of the symmetric Lovász
Local Lemma (Lemma 1.1). To generate a random partition, assign each vertex
independently and with uniform probability of 1

2 to one of the two sets.

For each vertex v ∈ V , define the following two events:

Av: The degree of v inside its subgraph G[Vi] is larger than d′.

Bv: The neighbourhood NG[Vi](v) spans more than s′ edges.
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2. Colouring Graphs with sparse Neighbourhoods

The lemma claims the existence of a partition of the graph such that all events
in {Av, Bv | v ∈ V } are avoided, which is exactly what the Lovász Local Lemma
provides, so we check its conditions.

Note that for each v ∈ V , both Av and Bv depend only on events corresponding to
vertices of distance one or two from v. There are at most d2 + d such vertices, hence
each event is mutually independent from all but at most 2(d2 + d) others and we
may use 2d2 + 2d as an upper bound for the dependencies in Lemma 1.1.

Moreover, we need to bound the probabilities of the events Av and Bv:

For Pr[Av], note that by construction of the random partition, the random variable
X counting neighbours of v ∈ Vi in G[Vi] is binomially distributed with parameters
degG(v) and 1

2 .

By assumption, degG(v) 6 d and hence E[X] = degG(v) · 1
2 6

d
2 . Applying the

Chernoff bound (ii) in Theorem A.1 with a = 2
√
d log d and n = d, we get

Pr[Av] = Pr
[
X > d′

]
6 e−8 log d = 1

d8 . (2.6)

To bound Pr[Bv], we use Azuma’s inequality, which is derived in Appendix A.2,
applied to vertex exposure martingales. Thereto, let i be such that v ∈ Vi and
let fv be the graph theoretic function counting the number of edges in NG[Vi](v).
Enumerate the vertices in G such that all neighbours of v are among the the first
d vertices and let X0, . . . , Xn be the vertex exposure martingale for fv using this
ordering.

Note that X0 = E[fv|G0] = E[fv] 6 s
4 and Xd = E[fv|Gd] = f(G[Vi]) because all

neighbours of v are among the first d vertices that are exposed. Moreover, we have
|Xj+1−Xj | 6 d for all j ∈ [d] because all vertices have maximum degree d and hence
exposing a new vertex reveals at most d new edges that are present for sure, so the
conditional expectation changes by at most d.

Define X ′0 = 0, and X ′j := 1
d(Xj − X0) for all j ∈ [d], so that |X ′j+1 − X ′j | 6 1 for

all j ∈ [d]. This means that the sequence (X ′j)j=0,...,d satisfies the assumption of
Azuma’s inequality (Theorem A.4) and we can conclude

Pr[Bv] = Pr
[
fv(G[Vi]) > s′

]
= Pr

[
Xd >

s

4 + 4d3/2√log d
]
6

6 Pr
[1
d

(Xd −X0) > 4
√
d log d

]
= Pr

[
X ′d > λ

√
d
]
6

6 e−
λ2
2 = e−

(4
√

log d)2
2 = e−8 log d = 1

d8 , (2.7)

where we applied Theorem A.4 with λ = 4
√

log d.

So in the application of Lemma 1.1, we can set p = d−8 as an upper bound for the
probabilities, justified by (2.6) and (2.7). The condition ep(d+1) 6 1 then translates
to

e · 1
d8 ·

(
2d2 + 2d+ 1

)
6 1.
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2.3. The second Case: f < ∆4ε

Note that the left-hand side is decreasing in d and the inequality holds for d = 2, so
it holds for all d > 2 and hence Lemma 1.1 applies, giving the conclusion. �

Based on Lemma 2.6, we can now prove Lemma 2.5.

Proof of Lemma 2.5. Let d0 := ∆ and s0 := ∆2/f and define sequences (di)ji=0
and (fi)ji=0 by

di = di−1
2 + 2

√
di−1 log di−1 and si = si−1

4 + 4d3/2
i−1

√
log di−1

for all t ∈ [j]. If d0 = ∆ > 2, applying Lemma 2.6 with d = d0 and s = s0 to G,
we can split G into two vertex-disjoint subgraphs with maximum degree at most d1
and such that each neighbourhood in these two subgraphs spans at most s1 edges.

Another application of Lemma 2.6 to each of the two subgraphs (provided that they
have maximum degree at least 2) results in four (or less) subgraphs of maximum
degree at most d2 in which every neighbourhood spans at most s2 edges.

Iterating this procedure j times, at each step applying Lemma 2.6 to all subgraphs
with maximum degree at least 2, we in the end get at most 2j subgraphs. Each of
them either had maximum degree at most one at some step, or it was created in the
jth iteration. Note that in the last case, dj is a bound on the maximum degree and
sj is a bound on the number of edges spanned by neighbourhoods.

So in order to prove Lemma 2.5, it remains to check

dj 6
8∆
2j and sj 6

8∆
2jf . (2.8)

By definition of (di)ji=0 and j, we have

di−1 > d0/2i−1 > ∆/2j−1 > f1/ε/8 > f1/ε
0 /8 (2.9)

for all i ∈ [j], hence by choosing the constant f0 large enough, we get that di−1 is
large enough to satisfy 2

√
di−1 log di−1 6 3

2d
2/3
i−1, implying

di = di−1
2 + 2

√
di−1 log di−1 6

di−1
2 +

3d2/3
i−1
2 6

(
3
√
di−1 + 1

)3

2 ,

which can – after taking cube roots and subtracting 1
21/3−1 on both sides – be rewrit-

ten in the form
d

1/3
i − 1

21/3 − 1
6

1
21/3

(
d

1/3
i−1 −

1
21/3 − 1

)
.

Inductively applying this inequality gives

d
1/3
i − 1

21/3 − 1
<

1
2i/3

(
d

1/3
0 − 1

21/3 − 1

)
(2.10)

for all i ∈ [j]. In particular, for i = j we obtain

d
1/3
j 6

d
1/3
0

2j/3
+ 1

21/3 − 1
6
d

1/3
0

2j/3
+ 4 6 2d1/3

0
2j/3

,
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2. Colouring Graphs with sparse Neighbourhoods

where the last inequality holds if d0 is large enough, which can again be guaranteed
due to (2.9) by choosing f0 large enough. Taking third powers and plugging in
d0 = ∆ gives dj 6 8∆

2j , which is the first inequality in (2.8).

To derive the second one, note that from (2.10), we can conclude by the same ar-
guments as above that for any i ∈ [j], we have di 6 8d0/2i. Consequently, the
definition of si and j imply that we have

si−1 >
s0

4i−1 = d2
0

4i−1f
=

(
8d0
2i−1

)2

64f >
1
64

( 8d0
2i−1

)2−ε
>

1
64d

2−ε
i−1 (2.11)

for all i ∈ [j]. Combining (2.9) and (2.11), we see that by choosing f0 large enough,
we can make all si−1 larger than any constant that we wish.

We claim that si 6 si−1/4 + 3s5/6
i−1 for all i ∈ [j]. To see this, note that (2.11) can be

rewritten to di−1 6 (64si−1)1/(2−ε), and plugging this into the definition of si gives

si = si−1
4 + 4d3/2

i−1 ·
√

log di−1 6
si−1

4 + 4 · (64si−1)
3

2(2−ε) ·
√

log
(
(64si−1)

1
2−ε
)
,

so it suffices to prove

4 (64si−1)
3

2(2−ε) ·
√

log
(
(64si−1)

1
2−ε
)
6 3s

5
6
i−1

⇐⇒ log (64si−1) 6 c · s
5
6−

3
4−2ε

i−1

with the positive constant c = 9
16 · 64

−3
2−ε · (2− ε). By monotonicity of the exponent

and the assumption ε ∈ (0, ε0) with ε0 := 1
6 , it is enough to have

log (64si−1) 6 c · s
5
6−

3
4−2ε0

i−1 = c · s
1
66
i−1,

which can be guaranteed to be true by choosing f0 large enough.

Using the claim, we get

si 6 si−1/4 + 3s5/6
i−1 6

1
4
(

6
√
si−1 + 2

)6
for all i ∈ [j], which can – after taking sixth roots and subtracting 2

41/6−1 on both
sides – be rewritten in the form

s
1/6
i − 2

41/6 − 1
6

1
41/6

(
s

1/6
i−1 −

2
41/6 − 1

)
.

Iteratively applying this inequality gives

s
1/6
j − 2

41/6−1 6
1

4j/6

(
s

1/6
0 − 2

41/6 − 1

)
,

and using s0 = d2
0/f and 41/6 − 1 > 1/4, we get

s
1/6
j <

s
1/6
0

4j/6
+ 2

41/6 − 1
<

d
2/6
0

4j/6f1/6 + 8 6 2d2/6
0

4j/6f1/6 ,

where the last step can be made true by choosing f0 such that d0 is large enough to
satisfy the inequality. Taking sixth powers and plugging in d0 = ∆ gives sj 6 8∆

2j /f ,
which is the second inequality in (2.8). �
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2.4. Conclusion and Asymptotic Tightness

Having the graph split into components satisfying the assumptions of Theorem 2.2,
the only thing left to do is to make sure that colouring each part from its own colour
palette by that theorem does not require too many colours so that we stay in the
desired asymptotics. This is covered by the following statement.

Theorem 2.7. Let ε ∈ (0, 1
6) and let G = (V,E) be a graph with maximum degree

∆ in which the neighbourhood NG(v) of any vertex v ∈ V spans at most ∆2/f edges
for some f < ∆4ε. Then the chromatic number of G satisfies

χ(G) = O
( ∆
ε2 log f

)
.

Proof. We intend to apply Lemma 2.5 to the graph G. As we are aiming for a proof
of the statement χ(G) = O(∆/ log f) for |V | → ∞, issues for small f can be hidden
in the constant suppressed by the O-notation and we may assume that f is larger
than some fixed constant, in particular the constant f0 provided by Lemma 2.5.

Consequently, we can apply Lemma 2.5 to get at most 2j vertex-disjoint induced
subgraphs such that each of them has maximum degree at most one or the maximum
degree is at most 8∆

2j and the neighbourhood of each vertex spans at most 8∆
2j /f

vertices.

We colour the subgraphs of maximum degree at most one using two colours, and as
all other subgraphs satisfy the assumptions of Theorem 2.2 with ∆ replaced by 8∆

2j
and ε replaced by ε/4, we know that each of them can be coloured using

O

 8∆
2j(

ε
4
)3 · log

(
8∆
2j
)
 = O

( ∆
2jε2 log f

)

colours, so colouring all subgraphs from their own colour palette gives the bound

χ(G) 6 2j · O
( ∆

2jε2 log f

)
= O

( ∆
ε2 log f

)
,

which is the what we wanted to prove. �

2.4 Conclusion and Asymptotic Tightness

For completeness, we state the proof of the main theorem of this section, Theo-
rem 2.1, which pieces the last two sections together.

Proof of Theorem 2.1. Let the graph G, its maximum degree ∆ and the number
f be as in the theorem statement. We can now fix some ε ∈ (0, 1

6) and distinguish
cases: If f > ∆4ε, we apply Theorem 2.2. This gives the bound

χ(G) = O
( ∆
ε3 log ∆

)
6 O

(
∆

1
2ε

3 log f

)
= O

( ∆
log f

)
,

where we used the assumption f 6 ∆2 to get log ∆ > 1
2 log f and absorbed the factor

1
2ε

3 into the O-notation because it is constant.
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2. Colouring Graphs with sparse Neighbourhoods

In the case f < ∆4ε, we can apply Theorem 2.7, which gives

χ(G) = O
( ∆
ε2 log f

)
= O

( ∆
log f

)
,

where we again absorbed the constant factor ε2 in the O(.)-notation. This concludes
the proof of Theorem 2.1. �

Last but not least, it is of general interest to know how good the bound O(∆/ log f)
on the chromatic number provided by Theorem 2.1 is. It turns out that the chromatic
number is not just upper bounded by c · ∆/ log f , but that there are graphs with
chromatic number lower bounded by b ·∆/ log f for some constant b.

Theorem 2.8. There exists an absolute positive constant b such that the following
holds: For every positive integer ∆ and every real number f satisfying 2 6 f 6
∆2, there is a graph G = (V,E) with maximum degree at most ∆ in which the
neighbourhood NG(v) of every vertex v ∈ V spans at most ∆2/f edges and

χ(G) > b · ∆
log f .

As an auxiliary statement, we first prove the following lemma on existence of graphs
satisfying certain bounds for maximum degree, girth and independence number.

Lemma 2.9. There exists a constant C such that for every integer ∆ > 2 there exists
a triangle-free graph G on n vertices with maximum degree ∆ and no independent
set of size at least Cn log ∆/∆.

Proof. Note that if we choose C > 7/ log 7, then for ∆ 6 7, the statement of the
above lemma is that there exists a non-empty triangle-free graph of maximum degree
at least ∆, which is trivially true. So we assume that ∆ > 8 for the rest of the proof.

Let n0 := 2∆3 and p := ∆
2n0

. We prove that a random graph G0 ∈ G(n0, p) is already
close to having the desired properties in the sense that

Pr
[
#{triangles in G0} >

n0
4

]
6

1
4 , (2.12)

Pr
[
#{vertices of degree larger than ∆ in G0} >

n0
4

]
6

1
4 , (2.13)

and Pr
[
#
{

indep. sets of size at least Cn0 log ∆
2∆ in G0

}
> 1

]
6

1
4 . (2.14)

For (2.12), let X be the random variable counting triangles in G0 and note that
linearity of expectation gives

E[X] 6
(
n0
3

)
· p3 < n3

0 · p3 = ∆3

8 = n0
16 ,

so by Markov’s inequality,

Pr
[
X >

n0
4

]
6

E[X]
n0
4
6

1
4 ,
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2.4. Conclusion and Asymptotic Tightness

which is (2.12). For (2.13), let Y be the random variable counting vertices of degree
larger than ∆ in G0. Note that the degree of a fixed vertex v in G0 is binomially
distributed with parameters n0 − 1 and p, so E[Y ] = (n0 − 1)p < n0p = ∆

2 . Hence
linearity of expectation and the Chernoff estimate (i) in Theorem A.1 with a = ∆

2
give

E[Y ] 6 n0 · Pr[deg v > ∆] 6 n0 · e∆(1−2 log 2) <
n0
16 ,

where the last inequality holds for ∆ > 8. As above, we can now deduce (2.13) from
Markov’s inequality:

Pr
[
Y >

n0
4

]
6

E[X]
n0
4
6

1
4 .

For (2.14), let the random variable Z count the number of independent sets of size
at least a := Cn0 log ∆

2∆ . Linearity of expectation gives

E[Z] 6
(
n0
a

)
· (1− p)(

a
2) 6

(
n0e

a

)a
· e−p

a2
2 = e

a·
(

logn0+1−log a− a∆
2n0

)
.

We want to have E[Z] 6 1
4 so that Markov’s inequality yields Pr[Z > 1] 6 1

4 , which
is the desired inequality (2.14). Equivalently, we need

a ·
(

logn0 + 1− log a− a∆
2n0

)
6 log 1

4

⇐⇒
(
C

4 − 1
)
· log ∆ + log C2 + log log ∆− 1 > 2∆ log 4

Cn0 log ∆ ,

where we divided by −a and plugged in the value of a. Note that we have log C
2 +

log log ∆− 1 > 0, so it suffices to prove(
C

4 − 1
)
· log ∆ > 2∆ log 4

Cn0 log ∆ ⇐⇒ C(C − 4) > 8 log 4
(∆ log ∆)2 ,

which holds for all ∆ > 2 if C is chosen large enough (in fact C = 6, which is also
larger than 7/ log 7, is already sufficient).

By (2.12), (2.13), (2.14) and a union bound, with a probability of at least 1
4 , the

random graph G0 has less than n0
4 triangles, less than n0

4 vertices of degree larger
than ∆ and no independent sets of size at least a.

By deleting n0
2 vertices from G0, we can hence make sure to get a graph G on

n = n0
2 vertices with no triangles and no vertices of degree larger than ∆. Moreover,

as deleting vertices does not increase the size of any independent set, G has no
independent set of size at least a = Cn log ∆

∆ . �

Proof of Theorem 2.8. Fix ∆ and f as in Theorem 2.8. Assume first that f >
∆−2

4 and let G be a triangle-free graph on n vertices of maximum degree ∆ and with
no independent set of size at least a := Cn log ∆

∆ as provided by Lemma 2.9. Then, as
desired,

χ(G) > n

a
>

∆
C log ∆ = ∆

log(4f) + 2 = Ω
( ∆

log f

)
.
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2. Colouring Graphs with sparse Neighbourhoods

If f 6 ∆−2
4 , then let H be a triangle-free graph with maximum degree 2f on n

vertices with no independent set of size a := Cn log(2f)
2f as provided by Lemma 2.9.

Let G be the graph that we obtain from H by replacing every vertex by a clique of⌊
∆

2f+1

⌋
vertices. Then the maximum degree of G is at most ∆ because ∆

2f+1 +2f 6 ∆.
Moreover, the maximum number of edges in a neighbourhood is at most

2f ·
(

∆
2f+1

2

)
6 2f · ∆2

2(2f)2 <
∆2

f

and when constructing G from H, the size of the largest independent set remained
at most a, so

χ(G) > |E(G)|
a

=
n ·
⌊

∆
2f+1

⌋
Cn log(2f)

2f
= Ω

( ∆
log f

)
. �
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Chapter 3

Applications of the Lopsided Lemma

When we introduced the lopsided Local Lemma in Section 1.2, we already remarked
that in order to exploit it, we need to find non-trivial negative dependency graphs.

This chapter is devoted to the investigation of two similar settings, both developed
by Lu and Székely in [11, 12], where we are able to describe negative dependency
graphs. More concretely, we work in the probability space of uniformly chosen ran-
dom matchings in complete and complete bipartite graphs. The key is to restrict to a
family of so-called canonical events in these spaces that interact naturally, providing
the structure that we need.

Interestingly, the configuration circumscribed above provides negative dependency
graphs that are – at least under certain circumstances – at the same time ε-near
positive dependency graphs for some ε > 0. So besides lower bounding the probabil-
ities in question by the lopsided Local Lemma, we can also upper bound them using
the tools developed in Section 1.3. Under certain conditions, these bounds match
asymptotically, which gives a method for asymptotically counting the number of
objects in the probability space avoiding the events in question.

The results shown in this chapter are all due to Lu and Székely, and the presenta-
tion given here arises from their papers [11] and [12]. Section 3.2 develops negative
dependency graphs for the case of matchings in complete bipartite graphs and shows
an application to hypergraph packings, while Section 3.3 covers matchings in com-
plete graphs, using a somewhat different approach that can be modified to apply
to the first case as well. This chapter culminates in the presentation of the tech-
nique of asymptotic counting (Subsection 3.3.3) and its application to the asymptotic
enumeration of d-regular graphs in Subsection 3.3.4.

3.1 The Space of Random Matchings

To start with, we repeat and introduce some terminology related to matchings.

Definition 3.1. Let G = (V,E) be a graph.

(i) A matching in G is a set M ⊆ E such that no two different edges in M share
a vertex.
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3. Applications of the Lopsided Lemma

(ii) The support of a matching M in G is the set suppM :=
⋃
e∈E e.

(iii) A matching M in G is a maximum cardinality matching if

| suppM | = max
{
| suppM ′|

∣∣M ′ is a matching in G
}
.

(iv) A matching M in G is a perfect matching if suppM = V .

(v) Two matchings M1 and M2 in G are conflicting if M1∪M2 is not a matching.

The subsequent definition introduces the space of random matchings and defines the
crucial canonical events, among which we will be able to identify a family of negative
dependency graphs if G is a complete or complete bipartite graph.

Definition 3.2. Let G be a graph.

(i) The probability space ΩG is the set of all maximum cardinality matchings in G
equipped with a uniform probability measure.

(ii) For a matching M in G, we define the canonical event AGM in ΩG associated
to M by

AGM :=
{
M ′ ∈ ΩG

∣∣∣M ⊆M ′}.
(iii) Two canonical events AGM1

and AGM2
are conflicting if the matchings M1 and

M2 are conflicting.

If the underlying graph G is clear from the context, we may denote the canonical
event associated to M by AM only. Note that AM is precisely the set of all maximum
cardinality matchings in G extending M .

The following proposition indicates for a first time that specializing the graph G
to a complete or complete bipartite graph provides enormously helpful regularity
structures.

Proposition 3.3 ([12]). Let G = (V,E) be a complete or complete bipartite graph
and let M1 and M2 be two matchings in G.

(i) The matchings M1 and M2 are conflicting if and only if AM1 ∩AM2 = ∅.

(ii) If M1 and M2 are not conflicting, then

AM2\M1 ⊆ AM2 and AM2 ∩AM1 = AM2\M1 ∩AM1 .

Proof. (i) If M1 and M2 are conflicting, then there are two edges e ∈ M1 and
f ∈ M2 and a vertex v ∈ V such that e ∩ f = {v}. Assume for contradiction
that there is a matching M extending both M1 and M2. In particular, M
needs to contain e and f – but then, v is covered by two edges of M , so M
cannot be a matching, contradicting the assumption. Hence AM1 ∩AM2 = ∅.

If on the other hand M1 and M2 are not conflicting, then M := M1 ∪M2 is a
matching. We claim that this partial matching can be extended to a maximum
cardinality matching, which proves that AM1 ∩AM2 6= ∅.
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3.2. Random Matchings in Kn1,n2

The claim is obvious if G is a complete graph: As all edges are present, simply
pairing the remaining vertices in V \supp(M) extends M to a maximum cardi-
nality matching because eventually, there is only at most one unpaired vertex
left.

If G is bipartite, the same procedure extends M to a maximum cardinality
matching if we always pair vertices from different sets of the bipartition. Here,
one of the parts will eventually not contain any unpaired vertices any longer,
so the extension is of maximum cardinality as well.

(ii) To prove AM2\M1 ⊆ AM2 , take complements go get the equivalent inclusion
AM2 ⊆ AM2\M1 , which is obvious: Any matching extending M2 also extends
M2 \M1.

To see AM2 ∩ AM1 = AM2\M1 ∩ AM1 , note that the inclusion “⊇” is obviously
true. For the other direction, take M ∈ AM2 ∩AM1 , i. e. a matching conflicting
M2 and extending M1. As M1 and M2 are not conflicting, their edges are
either equal or disjoint, so any conflict between M and M2 must come from a
conflict with M2 \M1. This proves that M ∈ AM2\M2 and hence establishes
the inclusion “⊆” as well. �

The crucial graphs associated to a set of events in ΩG the are the so-called conflict
graphs.

Definition 3.4 ([13]). Let G be a graph and let A1, . . . , Am be canonical events in
ΩG. The conflict graph of A1, . . . , Am is the graph H = (V,E) defined by

V = [m] and E = {{i, j} |Ai and Aj are conflicting}.

Doing a slight abuse of notation, we sometimes use the conflict graph with the events
themselves as the vertex set and edges defined similarly.

The following two chapters prove that conflict graphs are negative dependency graphs
if the underlying graph G is either a complete or a complete bipartite graph. Under
certain restrictions, we will also see that the conflict graph is an ε-near positive
dependency graph.

3.2 Random Matchings in Kn1,n2

For the first family of negative dependency graphs, we explore matchings in a com-
plete bipartite graph G = Kn1,n2 . For simplicity, we write Ωn1,n2 for the probability
space of maximum cardinality matchings in Kn1,n2 .

It turns out that in this special case, we can profit from not only keeping the record of
the edges of a matching M but also including the information about the bipartition:
Every edge contains exactly one vertex from each set of the bipartition.

Definition 3.5. Let G = (V,E) be a bipartite graph with parts V1 and V2. An f -
representation of a matching M in G is a triple (S, T, f) with S ⊆ V1, T ⊆ V2 and
a bijection f : S → T such that M = {(s, f(s)) | s ∈ S}.
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3. Applications of the Lopsided Lemma

It is easy to see that matchings and f -representations are in one-to-one correspon-
dence once V1 and V2 are fixed, justifying that in the setting of a bipartite graph G,
we will identify a matching M with the corresponding f -representation (S, T, f) and
hence also AM with A(S,T,f).

Let V1 and V2 be the parts of the bipartition of Kn1,n2 of sizes n1 and n2, respectively.
Assuming n1 6 n2, all maximum cardinality matchings have size n1, so their f -
representations are of the form (V1, f(V1), f) for an injection f : V1 → V2. More
generally, f -representations allow the interpretation of partial matchings as partial
injections from V1 to V2.

Every permutation σ of V2 acts naturally on matchings in Kn1,n2 via the map πσ
defined as follows: For any matching M with f -representation (S, T, f), πσ(M) is
the matching M ′ corresponding to (S′, T ′, f ′) with

S′ = S, T ′ = σ(T ) and f ′ = σ ◦ f.

Extending πσ to a set function by element-wise application, we get πσ(AM ) = AM ′ .
One important fact is that because we use a uniform probability measure, permuta-
tions of the form πσ are measure-preserving in ΩG.

3.2.1 A Negative Dependency Graph for Canonical Events

We now prove that for a set of canonical events, the natural relation of conflicting
or not, which is captured by the conflict graph, gives a negative dependency graph.

Theorem 3.6 ([11]). Let n1, n2 be positive integers and let A1, . . . , An be canonical
events in Ωn1,n2. Then the conflict graph G = (V,E) for the events A1, . . . , An is a
negative dependency graph.

Before turning to the theorem, we prove a lemma.

Lemma 3.7. Consider canonical events A1, . . . , An in Ωn1,n2 generated by match-
ings (Sk, Tk, fk)k∈[n] in Kn1,n2. Fix j ∈ [n], a set T and a bijection f such that
(Sj , T, f) is another matching. Then Pr[Aj ] = Pr

[
A(Sj ,T,f)

]
. Moreover, if G is the

conflict graph for the events A1, . . . , An and I ⊆ [n] \NG(j), then

Pr
[⋂
i∈I

Ai ∩A(Sj ,T,f)

]
> Pr

[⋂
i∈I

Ai ∩Aj

]
. (3.1)

Proof. As before, let V1 and V2 denote the sets of the bipartition of the underlying
graph Kn1,n2 such that for all k ∈ [n], Sk ⊆ V1 and Tk, T ⊆ V2. For the first
statement, Pr[Aj ] = Pr

[
A(Sj ,T,f)

]
, our goal is to construct a permutation σ of V2

such that πσ
(
A(Sj ,T,f)

)
= Aj . As πσ is measure-preserving in Ωn1,n2 , this proves the

equality.

We claim that we get the desired by defining σ : V2 → V2, such that

σ|V2\(T∪Tj) = id, σ|T = fj ◦ f−1 and σ|Tj\T = σ0, (3.2)

where σ0 : Tj \ T → T \ Tj is an arbitrary bijection. Such σ0 exists for sure because
|Tj \ T | = |T | − |Tj ∩ T | = |Tj | − |Tj ∩ T | = |T \ Tj |, but in general, it is not unique.
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3.2. Random Matchings in Kn1,n2

Fixing some σ0 of the described form, it can be directly seen that σ is well-defined
by (3.2) and bijective. In particular, σ|T = fj ◦ f−1 gives

σ
(
(Sj , T, f)

)
=
(
Sj , σ(T ), σ ◦ f

)
= (Sj , Tj , fj), (3.3)

as desired, also see Figure 3.1.

Sj

Tj T

Si

Ti

: (Sj , Tj , fj)

: (Sj , T, f)

: (Si, Ti, fi)

,

,

,

Figure 3.1: Matchings (Sj , Tj , fj), (Sj , T, f) and (Si, Ti, fi) with i ∈ I0.

This approach works for the second part as well. To start with, partition the set I
such that I1 := {i | Ai and A(Sj ,T,f) are conflicting} and I0 := I \ I1. Note that by
definition of G and because I ⊆ [n] \ NG(j), Aj and Ai are not conflicting for any
i ∈ I.

By (i) in Proposition 3.3, we get that for all i ∈ I1, A(Sj ,T,f) ⊆ Ai, hence

⋂
i∈I

Ai ∩A(Sj ,T,f) =
⋂
i∈I0

Ai ∩A(Sj ,T,f). (3.4)

Applying πσ with σ as in (3.2) to the right-hand side of (3.4), we on the one hand
see that σ

(
(Sj , T, f)

)
= (Sj , Tj , fj) as in (3.3). On the other hand, we claim that

σ(Ai) = Ai for all i ∈ I0: For t ∈ Ti ∩ T , the fact that A(Sj ,T,f) and Ai as well as Ai
and Aj are not conflicting gives

f−1(t) = f−1
i (t) = f−1

j (t) =⇒ σ(t) = fj ◦ f−1(t) = t.

Secondly, the set (Ti ∩ Tj) \ T is empty: If t ∈ (Ti ∩ Tj) \ T , then because Aj and Ai
are not conflicting, there exists s ∈ Sj ∩Si such that fj(s) = t = fi(s). In particular,
s ∈ Sj , so because Ai and A(Sj ,T,f) are not conflicting, we have t = fi(s) = f(s) ∈ T ,
a contradiction.

Finally, Ti \ (T ∪ Tj) ⊆ V2 \ (T ∪ Tj), hence σ(t) = t for all t ∈ Ti \ (T ∪ Tj) by
definition. Altogether, we see that

πσ

⋂
i∈I0

Ai ∩A(Sj ,T,f)

 =
⋂
i∈I0

Ai ∩A(Sj ,Tj ,fj). (3.5)
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3. Applications of the Lopsided Lemma

Using that πσ is measure-preserving, (3.4), (3.5) and monotonicity of the probability
measure imply

Pr
[⋂
i∈I

Ai ∩A(Sj ,T,f)

]
= Pr

⋂
i∈I0

Ai ∩A(Sj ,T,f)

 = Pr

πσ
⋂
i∈I0

Ai ∩A(Sj ,T,f)

 =

= Pr

⋂
i∈I0

Ai ∩A(Sj ,Tj ,fj)

 > Pr
[⋂
i∈I

Ai ∩A(Sj ,Tj ,fj)

]
,

which is (3.1) and hence proves the lemma. �

Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. Let A1, . . . , An and G be as in the theorem statement. To
see that G is a negative dependency graph, we need to prove that for all j ∈ [n] and
I ⊆ NG(j), we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
6 Pr[Aj ].

By definition of conditional probability, we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
=

Pr
[
Aj ∩

⋂
i∈I Ai

]
Pr
[⋂

i∈I Ai
] =

Pr
[⋂

i∈I Ai
∣∣∣Aj] · Pr[Aj ]

Pr
[⋂

i∈I Ai
] ,

so it suffices to prove

Pr
[⋂
i∈I

Ai

∣∣∣∣∣Aj
]
6 Pr

[⋂
i∈I

Ai

]
.

Note that for fixed j, the family A := {A(Sj ,T,f) | (Sj , T, f) is a matching} of events
is a partition of Ωn1,n2 . This fact and Lemma 3.7 give

Pr
[⋂
i∈I

Ai

]
=

∑
(Sj ,T,f)∈A

Pr
[⋂
i∈I

Ai ∩A(Sj ,T,f)

]
>

>
∑

(Sj ,T,f)∈A
Pr
[⋂
i∈I

Ai ∩Aj

]
=

=
∑

(Sj ,T,f)∈A
Pr
[⋂
i∈I

Ai

∣∣∣∣∣Aj
]
· Pr[Aj ] =

=
∑

(Sj ,T,f)∈A
Pr
[⋂
i∈I

Ai

∣∣∣∣∣Aj
]
· Pr

[
A(Sj ,T,f)

]
= Pr

[⋂
i∈I

Ai

∣∣∣∣∣Aj
]
,

which is the desired inequality. �

3.2.2 An Application to Packing Problems

We present one application of the above results on negative dependency graphs from
[11] here, namely results on hypergraph packing problems. For clarity, we repeat
definitions concerning hypergraphs.
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3.2. Random Matchings in Kn1,n2

Definition 3.8. (i) A hypergraph H = (V,E) is a finite set of vertices V together
with a set E ⊆ 2V of edges.

(ii) A subhypergraph of a hypergraph H = (V,E) is a hypergraph H ′ = (V ′, E′)
with V ′ ⊆ V and E′ ⊆ E.

(iii) An r-uniform hypergraph is a hypergraph H = (V,E) with |e| = r for all
e ∈ E.

(iv) A complete r-uniform hypergraph on n vertices is a hypergraph H = (V,E)
with |V | = n and E =

(V
r

)
, denoted by K(r)

n .

(v) Two subhypergraphs H1 = (V1, E1) and H2 = (V2, E2) of K(r)
n are edge-disjoint

if E1 ∩ E2 = ∅.

The hypergraph packing problem is the following ([11]): Given two r-uniform hy-
pergraphs H1 = (V1, E1) and H2 = (V2, E2) and an integer n such that n >
max{|V1|, |V2|}, do there exist embeddings ϕ1 and ϕ2 of H1 and H2, respectively,
into K(r)

n such that ϕ1(H1) and ϕ2(H2) are edge-disjoint?

The following theorem states sufficient conditions under which the hypergraph pack-
ing problem can be answered positively.

Theorem 3.9 ([11]). Let H1 = (V1, E1) and H2 = (V2, E2) be two r-uniform hy-
pergraphs with |E1| = m1 and |E2| = m2. Let d1 and d2 be integers such that for
both i ∈ {1, 2}, every edge in Ei intersects at most di other edges in Ei. If n is an
integer such that

(d1 + 1) ·m2 + (d2 + 1) ·m1 6
1
e

(
n

r

)
, (3.6)

then there exist injections ϕi : Vi → [n] such that the natural images ϕ1(H1) and
ϕ2(H2) are edge-disjoint.

Proof. Let H1, H2 and integers m1,m2, d1, d2, n be as in the theorem such that
(3.6) holds.

Without loss of generality, assume that H2 is given as a subhypergraph of K(r)
n on

the vertex set [n]. We want to embed V1 into [n] via an injection ϕ1 such that no
edge of ϕ1(H1) coincides with an edge of H2.

First of all, the interpretation of injections as matchings allows translating the in-
jection ϕ1 : V1 → [n] to a maximum cardinality matching with f -representation
(V1, ϕ1(V1), ϕ1) in the complete bipartite graph with parts V1 and [n]. Obviously,
this correspondence is one to one.

Moreover, given two edges e ∈ E1 and f ∈ E2, the maximum cardinality matchings
realising the bad event that e is mapped to f are exactly the ones in

⋃
ϕA(e,f,ϕ),

where the union is taken over all bijections ϕ : e→ f .

Our goal is to show that a random maximum cardinality matching in the complete
bipartite graph with parts V1 and [n] has a positive probability of avoiding all events
of the form A(e,f,ϕ) with e, f and ϕ as above. To do so, we apply the symmetric
lopsided Local Lemma, Lemma 1.6.
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3. Applications of the Lopsided Lemma

The conflict graph G of all the events

A := {A(e,f,ϕ) | e ∈ E1, f ∈ E2, ϕ : e→ f bijective}

is a negative dependency graph by Theorem 3.6. To bound the maximum degree d
in G, observe the following: Two events A(e,f,ϕ) and A(e′,f ′,ϕ′) in A are conflicting if
and only if one of the following two points is satisfied:

(i) The edges e and e′ have empty intersection while their images f and f ′ have
non-empty intersection.

(ii) The edges e and e′ have non-empty intersection but ϕ and ϕ′ are defined
differently at a vertex v ∈ e ∩ e′.

Fix an event A(e,f,ϕ). To determine the degree d of the corresponding vertex in G,
we count the number of events in A conflicting A(e,f,ϕ).

By assumption, there are m1 edges in E1 and at most d2 +1 edges in E2 intersecting
f (including f), so there are at most m1(d2 + 1) choices for the edges e′ and f ′ of an
event A(e′,f ′,ϕ′) generating a conflict of type (i) with A(e,f,ϕ). For each such choice of
edges, there are r! choices of a bijection e→ f , giving a total bound of r! ·m1(d2 +1)
conflicts of type (i).

Similarly, there are at most d1 + 1 edges in E1 intersecting e and there are m2 edges
in E2, hence at most m2(d1 + 1) choices of edges e′ and f ′ of an event A(e′,f ′,ϕ′)
generating a conflict of type (ii) with A(e,f,ϕ). Analogously to the above, this gives
a total bound of r! ·m2(d1 + 1) conflicts of type (ii).

Note that the above counts the event A(e,f,ϕ) itself in both cases, so together with
the assumption (3.6), this gives

d+ 1 < r! ·
(
m1(d2 + 1) +m2(d1 + 1)

)
6
r!
e

(
n

r

)
= n!
e · (n− r)! . (3.7)

The probability of an event A(e,f,ϕ) ∈ A is

p := Pr
[
A(e,f,ϕ)

]
= 1
r! ·

(n
r

) = (n− r)!
n! (3.8)

because there are
(n
r

)
choices for the image of e and r! choices for the bijection

mapping e to this image; exactly one of these choices corresponds to f and ϕ.

To apply Lemma 1.6, we need e(d+ 1)p 6 1, which is a direct consequence of (3.7)
and (3.8). The lemma implies that for a random matching in the complete bipartite
graph with parts V1 and [n], the probability of avoiding all events in A, which is
Pr
[⋂

A∈AA
]
, is positive, hence there exists a matching avoiding all events in A.

This matching corresponds to the injection of V1 → [n] inducing the desired inclusion
of H1 into K(r)

n which is edge-disjoint from H2. �

Note that one can construct examples that show tightness of Theorem 3.9 up to the
constant 1

e . Lu and Székely provide one in [11] that shows that 1
e cannot be replaced

by 2.
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3.3. Random Matchings in Kn

3.3 Random Matchings in Kn

This section proves results in the probability space of maximum cardinality match-
ings in complete graphs Kn with even n, analogously to what we did in Section 3.2
for matchings in complete bipartite graphs.

Note that maximum cardinality matchings in an even complete graph are always
perfect matchings, so Ωn is the space of perfect matchings. We prove that conflict
graphs for canonical events in this space are negative dependency graphs. More-
over, we will find conditions under which the same graphs are also near-positive
dependency graphs.

One can observe that the proof of Theorem 3.6 does not immediately generalise
to graphs other than complete bipartite graphs because it relies on the structure
provided by the bipartition. In contrast, the methods presented in this section
for complete graphs are general in the sense that they can be easily adjusted to
complete bipartite graphs. We stay with complete graphs here and point to [12] for
the alterations.

We always assume that for positive integers n, the complete graph Kn has [n] as
the set of its vertices. For easier notation, we write Ωn instead of ΩKn for the set of
maximum cardinality matchings in Kn. Similarly, for a matching M in Kn, we use
AnM instead of AKnM for the associated canonical event.

Under these assumptions, for n, s ∈ Z+, every matching M in Kn can be seen as a
matching in Kn+s via the natural embedding of [n] into [n+s]. Note that a matching
M in Kn can generate different events AnM and An+s

M in Ωn and Ωn+s, respectively.

Every permutation σ of [n] acts on matchings in Kn by permuting the underlying
set of vertices [n], namely via the map τσ defined as follows:

{u, v} ∈M ⇐⇒ {σ(u), σ(v)} ∈ τσ(M).

By element-wise application, τσ extends to a set function, in particular if τσ(M) =
M ′, then τσ(AM ) = AM ′ . Moreover, τσ permutes Ωn, hence as we use a uniform
probability measure, τσ is measure-preserving.

3.3.1 Negative Dependency Graphs for Canonical Events

The following theorem is the analogue of Theorem 3.6, applying to matchings in
complete graphs on an even number of vertices here.

Theorem 3.10 ([12]). Let n ∈ Z+ be even and let matchings M1, . . . ,Mm in Kn

generate canonical events AM1 , . . . , AMm in Ωn, where m is a positive integer. Then,
the conflict graph G = (V,E) for the events AM1 , . . . , AMm is a negative dependency
graph.

The proof of the above theorem is partly outsourced into the following lemma.
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3. Applications of the Lopsided Lemma

Lemma 3.11 ([12]). Let n be a positive integer. For any collectionM of matchings
in Kn, we have

Pr
[ ⋂
M∈M

AnM

]
6 Pr

[ ⋂
M∈M

An+2
M

]
.

Proof. For i ∈ [n + 1], let Ei denote the partial matching in Kn+2 consisting of
the single edge {i, n + 2}. Note that the events {AEi | i ∈ [n + 1]} partition the
space Ωn+2: Perfect matchings cover all n+ 2 vertices, hence in each such matching,
exactly one of the edges {i, n+ 2} appears.

Additionally, let Mi := {M ∈ M |M and Ei do not conflict} for each i ∈ [n + 1].
For M 6∈ Mi, Proposition 3.3 (i) gives An+2

M ∩ AEi = ∅, hence AEi ⊆ An+2
M or

equivalently, An+2
M ∩AEi = AEi . Combining these two observations, we get

Pr
[ ⋂
M∈M

An+2
M

]
=

n+1∑
i=1

Pr
[ ⋂
M∈M

An+2
M ∩AEi

]
=

=
n+1∑
i=1

Pr

 ⋂
M∈Mi

An+2
M ∩AEi

. (3.9)

For i ∈ [n+1], let σi be the permutation of [n+2] transposing i and n+1 and fixing
all other elements. As each M ∈ Mi does not cover i, we have τσi

(
An+2
M

)
= An+2

M .
Moreover, τσi(AEi) = AEn+1 and τσi is measure-preserving, so (3.9) extends to

Pr
[ ⋂
M∈M

An+2
M

]
=

n+1∑
i=1

Pr

τσi
 ⋂
M∈Mi

An+2
M ∩AEi

 =

=
n+1∑
i=1

Pr

 ⋂
M∈Mi

An+2
M ∩AEn+1

 =

=
n+1∑
i=1

Pr

 ⋂
M∈Mi

An+2
M

∣∣∣∣∣∣AEn+1

 · Pr
[
AEn+1

]
=

=
n+1∑
i=1

Pr

 ⋂
M∈Mi

AnM

 · Pr
[
AEn+1

]
>

> Pr
[ ⋂
M∈M

AnM

]
·
n+1∑
i=1

Pr
[
τσi(AEn+1)

]
= Pr

[ ⋂
M∈M

AnM

]
, (3.10)

which is the desired. The inequality in (3.10) holds by monotonicity of the probability
measure because Mi ⊆M. Moreover, we used

Pr
[
AEn+1

]
= Pr

[
τσi(AEn+1)

]
and

n+1∑
i=1

Pr
[
τσi(AEn+1)

]
=

n+1∑
i=1

Pr[AEi ] = 1,

which follows from the facts that τσi is measure preserving and that the events AEi
partition the Ωn+2. �
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3.3. Random Matchings in Kn

We can now apply the above lemma to get a proof of Theorem 3.10.

Proof of Theorem 3.10. Let (Mi)i∈[m] be matchings generating canonical events
(AMi)i∈[m] with conflict graph G. Fix j ∈ [m] and I ⊆ [m] \ NG(j). We need to
prove

Pr
[
AMj

∣∣∣∣∣ ⋂
i∈I

AMi

]
6 Pr

[
AMj

]
. (3.11)

If Pr
[⋂

i∈I AMi

]
= 0, there is nothing to prove, so assume the opposite. Note that

Pr
[
AMj

]
6= 0, so by definition of conditional probability, the above is equivalent to

Pr
[⋂

i∈I AMi ∩AMj

]
Pr
[
AMj

] 6 Pr
[⋂
i∈I

AMi

]
.

By definition of I, Mi and Mj are not conflicting for any i ∈ I, so by (ii) in Propo-
sition 3.3, we get

Pr
[⋂

i∈I AMi ∩AMj

]
Pr
[
AMj

] =
Pr
[⋂

i∈I AMi\Mj
∩AMj

]
Pr
[
AMj

] = Pr
[⋂
i∈I

AMi\Mj

∣∣∣∣∣AMj

]
, (3.12)

and combining (3.11) and (3.12), we see that it suffices to prove

Pr
[⋂
i∈I

AMi\Mj

∣∣∣∣∣AMj

]
6 Pr

[⋂
i∈I

AMi

]
. (3.13)

If Mi \Mj = ∅ for some i, the left-hand side in the above is equal to zero and there
is nothing to show. Otherwise, we transform it to be able to apply Lemma 3.11.
Let s = | supp(Mj)| and define σ to be a permutation of [n], the vertex set of the
underlying Kn, such that

σ(supp(Mj)) = {n− s+ 1, . . . , n}.

Because for all i ∈ I, Mi and Mj are not conflicting, this gives supp(σ(Mi \Mj)) ⊆
[n− s]. Define the set MI := {σ(Mi \Mj) | i ∈ I} of matchings in Kn−s. Applying
the measure-preserving τσ in the left-hand side of (3.13), we get

Pr
[⋂
i∈I

AnMi\Mj

∣∣∣∣∣AnMj

]
= Pr

[
τσ

(⋂
i∈I

AnMi\Mj

) ∣∣∣∣∣ τσ (AnMj

)]
=

= Pr
[⋂
i∈I

Anσ(Mi\Mj)

∣∣∣∣∣Anσ(Mj)

]
= Pr

 ⋂
M∈MI

AnM

∣∣∣∣∣∣Aσ(Mj)

 =

= Pr

 ⋂
M∈MI

An−sM

, (3.14)

where the last equality follows because conditioning on Aσ(Mj) fixes all edges in
σ(Mj), which cover {n− s+ 1, . . . , n}.
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3. Applications of the Lopsided Lemma

Note that s is the cardinality of the support of a matching, hence it is even, so by
applying Lemma 3.11 exactly s/2 times to the collection MI , we get

Pr

 ⋂
M∈MI

An−sM

 6 Pr

 ⋂
M∈MI

An−s+2
M

 6 . . . 6 Pr

 ⋂
M∈MI

AnM

.
Plugging back in the definition of MI and using monotonicity of the probability
measure, the above extends to

Pr

 ⋂
M∈MI

An−sM

 6 Pr

 ⋂
M∈MI

AnM

 = Pr
[⋂
i∈I

AMi\Mj

]
6 Pr

[⋂
i∈I

AMi

]
. (3.15)

Putting together (3.14) and (3.15) gives (3.13), which proves the theorem. �

3.3.2 Near-Positive Dependency Graphs for Canonical Events

This chapter proves that under certain assumptions, the conflict graphs are not only
negative dependency graphs, but at the same time near-positive dependency graphs.

In order to state the assumptions, we need the definitions of δ-sparsity and r-
boundedness.

Definition 3.12 ([12]). Let n be an even integer and let M = {M1, . . . ,Mm} be
a collection of matchings in Kn and let {AM1 , . . . , AMm} be the events with conflict
graph G they generate. Let sj = | supp(Mj)| for all j ∈ [m].

(i) For all M ∈M, define

MM :=
{
M ′ \M

∣∣∣∣∣ M ′ ∈M, M ′ 6= M, M ′ ∩M 6= ∅,
M ′ and M are not conflicting

}
.

(ii) The collection M is said to be δ-sparse if

– No matching from M is subset of another matching in M.

– For all j ∈ [m], we have

Pr
[
AMj

]
< δ and

∑
i∈NG(j)

Pr[AMi ] + 2 Pr[AMi ]
2 < δ. (3.16)

– For all edges {i, j} of Kn, we have∑
M∈M: {i,j}∈M

Pr[AM ] + 2 Pr[AM ]2 < δ. (3.17)

– For any j ∈ [m] and a permutation σj mapping supp(Mj) to the set
{n− sj + 1, . . . , n}, we have∑

M∈MMj

Pr
[
A
n−sj
σj(M)

]
+ Pr

[
A
n−sj
σj(M)

]2
< δ. (3.18)

(iii) For a positive integer r, we say that M is r-bounded if for all j ∈ [m], we
have |Mj | 6 r.
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3.3. Random Matchings in Kn

Note that the condition (3.18) does not depend on the particular choice of σj . The
point of permuting the vertices via σj is that it allows interpreting a matching M \Mj

as a matching in the complete graph on the vertices [n−sj ]. Alternatively, one could
just think of the matching M\Mj as a matching in the complete graph on the vertices
[n] \ supp(Mj).

For technical reasons, we also need the following proposition.

Proposition 3.13. For each γ ∈ (0, 1/4), the equation

1 = ye−γy

has a unique solution y(γ) ∈ [1, 2] and defines a function y : (0, 1/4)→ [1, 2].

This proposition is just of analytical nature, so we take it for granted for now and
defer its proof to Appendix B (Proposition B.1). Having the above at hand, we can
now state the main theorem of this section, giving near-positive dependency graphs.

Theorem 3.14 ([12]). For a positive integer m and an even positive integer n,
let A1, . . . , Am be canonical events in Ωn generated by the matchings in the family
M = {M1, . . . ,Mm}. If M is δ-sparse and r-bounded for some δ ∈ (0, 1/8) and a
positive integer r, then the conflict graph G for the events A1, . . . , Am is an ε-near
positive dependency graph with

ε = 1− e−δy(2δ)−δ2y(2δ)2
y(2δ)−2r.

The proof of this theorem uses parts of the lopsided Local Lemma. In the following
lemma, we adjust the lopsided Local Lemma to the setting that we have here in such
a way that it provides precisely the conclusions that we need.

Lemma 3.15 ([12]). Let A1, . . . , Am be events in an arbitrary probability space with
negative dependency graph G and let ε ∈ (0, 1/4) such that for all j ∈ [m], we have

Pr[Aj ] < ε and
∑

i∈NG(j)
Pr[Ai] + 2 Pr[Ai]2 < ε. (3.19)

Then, we have the following:

(i) For any S, T ⊆ [m] with S ∩ T = ∅, we have

Pr

⋂
i∈S

Ai

∣∣∣∣∣∣
⋂
j∈T

Aj

 >∏
i∈S

(
1− Pr[Ai]y(ε)

)
.

(ii) We have

Pr
[
m⋂
i=1

Ai

]
> exp

(
−

m∑
i=1

(
Pr[Ai]y(ε) + Pr[Ai]2y(ε)2

))
.

Proof. The idea is to use parts of the proof of Lemma 1.5, the lopsided Local
Lemma, so for all i ∈ [n], we need xi ∈ [0, 1) such that

Pr[Ai] 6 xi ·
∏

j∈NG(i)
(1− xj).
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3. Applications of the Lopsided Lemma

We claim that setting xi = Pr[Ai]y(ε) is a good choice: On the one hand, xi ∈ (0, 1/2)
as 0 6 Pr[Ai] < ε 6 1/4 and y(ε) ∈ [1, 2]. On the other hand, the definition of y(ε),
the assumption (3.19), y(ε) 6 2 and the inequality e−x−x2

6 1− x give

Pr[Ai] = xi
y(ε) = xie

−εy(ε) 6 xi exp

−∑
j∈NG(i)

(
xj + x2

j

) 6 xi ·∏
j∈NG(i)

(1− xj),

where the fact that e−x−x2
6 1 − x holds for x ∈ (0, 1/2) can be proved by taking

logarithms and comparing derivatives. So the assumptions for Lemma 1.5 hold.

To conclude (i), we use an intermediate result from the proof of the Local Lemma,
namely (1.4): For every j ∈ [m] and every set I ⊆ [m], we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
6 xj (3.20)

Let S, T ⊆ [m] such that S ∩ T = ∅ and assume S = {m1, . . . ,ms}. By repeated
application of the definition of conditional probability,

Pr

⋂
i∈S

Ai

∣∣∣∣∣∣
⋂
j∈T

Aj

 =
Pr
[⋂s

i=1Ami ∩
⋂
j∈T Aj

]
Pr
[⋂

j∈T Aj
] =

=
Pr
[
Am1

∣∣∣ ⋂si=2Ami ∩
⋂
j∈T Aj

]
· Pr

[⋂s
i=2Ami ∩

⋂
j∈T Aj

]
Pr
[⋂

j∈T Aj
] = . . . =

=
s∏

k=1
Pr

Amk
∣∣∣∣∣∣

s⋂
i=k+1

Ami ∩
⋂
j∈T

Aj

 =
s∏

k=1

1− Pr

Amk
∣∣∣∣∣∣
⋂
i∈Ik

Ai

 >
>

s∏
k=1

(
1− xmk

)
=
∏
i∈S

(
1− Pr[Ai]y(ε)

)
,

where Ik := T ∪ {mk+1, . . . ,ms} and the inequality follows from (3.20). This proves
(i), and to conclude (ii), set S = [m], T = ∅ and lower-bound the product using
1− x > e−x−x2 as we did when checking the conditions Lemma 1.5 above. �

The proof of Theorem 3.14 is in spirit similar to the one of Theorem 3.10, and the
following lemma corresponds to Lemma 3.11.

Lemma 3.16 ([12]). For a positive integer m, let A1, . . . , Am be canonical events
in Ωn generated by matchings in M = {M1, . . . ,Mm}, let G be the conflict graph of
the events A1, . . . , Am and let ε ∈ (0, 1/4) be such that we have

∀j ∈ [m] : Pr[Aj ] < ε and
∑

i∈NG(j)
Pr[Ai] + 2 Pr[Ai]2 < ε, (3.21)

and ∀{i, j} ∈
(

[n]
2

)
:

∑
M∈M:{i,j}∈M

Pr[AM ] + 2 Pr[AM ]2 < ε. (3.22)

Then we have
Pr
[ ⋂
M∈M

An+2
M

]
6 y(ε)2 · Pr

[ ⋂
M∈M

AnM

]
.
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3.3. Random Matchings in Kn

Proof. We proceed as in the proof of Lemma 3.11: For i ∈ [n + 1], introduce the
partial matchings Ei in Kn+2 consisting of the single edge {i, n + 2} and note that
the events AEi partition Ωn+2. Moreover, let Mi denote the set of matchings in M
not covering vertex i.

In parts of (3.10), we proved that in this setting,

Pr
[ ⋂
M∈M

An+2
M

]
=

n+1∑
i=1

Pr

 ⋂
M∈Mi

AnM

 · Pr[AEi ].

As
∑n+1
i=1 Pr[AEi ] = 1, it suffices to show that for every i ∈ [n+ 1], we have

Pr
[⋂

M∈MAnM

]
Pr
[⋂

M∈Mi
AnM

] = Pr

 ⋂
M∈M\Mi

AnM

∣∣∣∣∣∣
⋂

M∈Mi

AnM

 > y(ε)−2. (3.23)

By the assumption (3.21), we may apply Lemma 3.15. With S = M \Mi and
T =Mi, part (i) gives

Pr

 ⋂
M∈M\Mi

AnM

∣∣∣∣∣∣
⋂

M∈Mi

AnM

 > ∏
M∈M\Mi

(
1− Pr[AM ]y(ε)

)
. (3.24)

Note that M\Mi is the set of matchings in M covering vertex i. We distinguish
three cases:

– There are no matchings covering i. Then, the product in (3.24) is empty, so the
right-hand side is one and in particular larger than y(ε)−2 because y(ε) ∈ [1, 2].

– There is a vertex j 6= i such that for all M ∈ M, i ∈ M implies {i, j} ∈ M .
Then

∏
M∈M\Mi

(
1− Pr[AM ]y(ε)

)
> exp

−∑
M∈M:
{i,j}∈M

(
Pr[AM ]y(ε) + Pr[AM ]2y(ε)2

)
by the inequality 1 − x > e−x−x

2 , which holds for x ∈ (0, 1/2) as we have it
here. Using y(ε) 6 2 and the assumption (3.22), the right-hand side can be
lower bounded by exp(−εy(ε)) = y(ε)−1 > y(ε)−2, which is what we need.

– If the previous cases do not apply, then there are matchingsMk andM` covering
vertex i with different edges. Hence if a matching covers vertex i, it has to
conflict either Mk or M`, so∏

M∈M\Mi

(
1− Pr[AM ]y(ε)

)
>

∏
i∈NG(k)

(
1− Pr[Ai]y(ε)

)
·
∏

i∈NG(`)

(
1− Pr[Ai]y(ε)

)
For each of the products on the right-hand side, we can proceed as in the
previous case: Use the inequality 1−x > e−x−x2 , y(ε) 6 2 and the assumption
(3.21) to get a lower bound of exp(−εy(ε)) = y(ε)−1 for each product, together
giving the bound y(ε)2 that were aiming for.
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3. Applications of the Lopsided Lemma

So in each of the three cases, we could bound the product in (3.24) by y(ε)−2, which
gives the inequality in (3.23). �

Now, we are ready to combine the two lemmas for a proof of Theorem 3.14.

Proof of Theorem 3.14. Recall that the conflict graph G = (V,E) for the events
A1, . . . , Am is defined by

V := [m] and E := {{i, j} |Mi and Mj are conflicting}

and that it is a negative dependency graph by Theorem 3.10.

To have an ε-near positive dependency graph according to Definition 1.8, we on the
one hand need that Pr[Ai ∩Aj ] = 0 for all {i, j} ∈ E. But by definition, {i, j} ∈ E
is equivalent to Ai and Aj conflicting, which is in turn equivalent to Ai ∩Aj = ∅ by
Proposition 3.3 (i), so Pr[Ai ∩Aj ] = 0 follows.

On the other hand, we need that for all j ∈ [n] and I ⊆ [n] \ (NG(j)∪ {j}), we have

Pr
[
Aj

∣∣∣∣∣ ⋂
i∈I

Ai

]
> (1− ε) Pr[Aj ] (3.25)

whenever the conditional probability is well-defined. Switching to the notation ex-
plicitly indicating the matchings, using the definition of conditional probability and
Proposition 3.3 (ii) (which applies because by definition of I, Mj and Mi are not
conflicting for i ∈ I), we get

Pr
[
AMj

∣∣∣∣∣ ⋂
i∈I

AMi

]
=

Pr
[⋂

i∈I AMi ∩AMj

]
Pr
[⋂

i∈I AMi

] =
Pr
[⋂

i∈I AMi\Mj
∩AMj

]
Pr
[⋂

i∈I AMi

] =

=
Pr
[⋂

i∈I AMi\Mj

∣∣∣AMj

]
Pr
[⋂

i∈I AMi

] · Pr
[
AMj

]
.

Recall that 1− ε = e−δy(2δ)−δ2y(2δ)2 ·y(2δ)−2r, so after plugging this in and using the
above, (3.25) is equivalent to

Pr
[⋂
i∈I

AMi\Mj

∣∣∣∣∣AMj

]
> e−δy(δ)−δ2y(δ)2 · y(δ)−2r · Pr

[⋂
i∈I

AMi

]
. (3.26)

We now transform the left-hand side so that we can apply Lemma 3.16. Let s =
| supp(Mj)| and let σ be a permutation of [n], the underlying vertex set of Kn, such
that

σ(supp(Mj)) = {n− s+ 1, . . . , n}.

This gives supp(σ(Mi \Mj)) ⊆ [n − s] for all i ∈ I because Mi and Mj are not
conflicting. Define the set MI

Mj
:= {Mi \Mj | i ∈ I} of matchings. Applying the
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3.3. Random Matchings in Kn

measure-preserving τσ in the left-hand side of (3.26), we get

Pr
[⋂
i∈I

AnMi\Mj

∣∣∣∣∣AnMj

]
= Pr

[
τσ

(⋂
i∈I

AnMi\Mj

) ∣∣∣∣∣ τσ (AnMj

)]
=

= Pr
[⋂
i∈I

Anσ(Mi\Mj)

∣∣∣∣∣Anσ(Mj)

]
= Pr

 ⋂
M∈MI

Mj

Anσ(M)

∣∣∣∣∣∣Aσ(Mj)

 =

= Pr

 ⋂
M∈MI

Mj

An−sσ(M)

. (3.27)

At this point, we can apply Lemma 3.16: The assumptions (3.18) and (3.17) in δ-
sparsity imply that the matchings in σ(MI

Mj
), which is a subset of σ(MMj ), satisfy

the requirements in (3.21) and (3.22), respectively, with 2δ instead of ε. Iteratively
applying Lemma 3.16 exactly s

2 times, we get

Pr

 ⋂
M∈MI

Mj

An−sσ(M)

 > Pr

 ⋂
M∈MI

Mj

An−s+2
σ(M)

 · y(2δ)−2 > . . . >

> Pr

 ⋂
M∈MI

Mj

Anσ(M)

 · y(2δ)−s > Pr

 ⋂
M∈MI

Mj

AnM

 · y(2δ)−2r, (3.28)

where we used that y(ε) > 1, that r-boundedness implies s 6 2r, and that the
permutation σ does not affect the probabilities.

Combining (3.27) and (3.28), we see that in order to conclude (3.26), it is enough to
have

Pr

 ⋂
M∈MI

Mj

AnM

 > e−δy(2δ)−δ2y(2δ)2 · Pr
[⋂
i∈I

AnMi

]
. (3.29)

Unwrapping the definitions and applying Proposition 3.3 (ii), we see that

Pr

 ⋂
M∈MI

Mj

AnM

 = Pr
[⋂
i∈I

AnMi\Mj

]
= Pr

[⋂
i∈I

AnMi\Mj

]
=

= Pr
[⋂
i∈I

AnMi\Mj
∩AnMi

]
= Pr

 ⋂
M∈MI

Mj

AnM ∩
⋂
i∈I

AnMi

,
hence (3.29) is – after division by the probability on the right-hand side – equivalent
to

Pr

 ⋂
M∈MI

Mj

AnM

∣∣∣∣∣∣
⋂
i∈I

AMi

 > e−δy(2δ)−δ2y(2δ)2
,

This can be proved by an application of Lemma 3.15 (i) to the sets MI
Mj

and
{Mi|i ∈ I}: The canonical events generated by the matchings in MI

Mj
∪ {Mi|i ∈ I}

satisfy the assumption (3.19) with ε being equal to 2δ by the assumptions (3.16) and
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3. Applications of the Lopsided Lemma

(3.18) in the definition of δ-sparsity. Moreover,MI
Mj

and {Mi|i ∈ I} are disjoint by
the first assumption in δ-sparsity, so Lemma 3.15 gives

Pr

 ⋂
M∈MI

Mj

AnM

∣∣∣∣∣∣
⋂
i∈I

AnMi

 > ∏
M∈MI

Mj

(
1− Pr[AM ]y(2δ)

)
.

Using 1 − x > e−x−x
2 and the assumption (3.18) together with M I

Mj
⊆ MMj , the

above product can be lower bounded by

exp

−∑
M∈MI

Mj

(
Pr[AM ]y(2δ) + Pr[AM ]2y(2δ)2

) > e−δy(2δ)−δ2y(2δ)2
,

and combining the last two inequalities completes the proof of Theorem 3.14. �

3.3.3 Asymptotic Counting using Local Lemma

Looking at the last two sections, we established the basis of applying both the
lopsided Local Lemma (Lemma 1.5) and the variation of the Local Lemma giving
upper bounds (Lemma 1.9) in the setting of random matchings in complete graphs
on an even number of vertices.

The idea for asymptotic counting using the Local Lemma is to define a sequence
of probability spaces, in our case Ωn, and events A1(n), . . . , Am(n)(n) such that the
lower and upper bounds on Pr

[⋂m(n)
i=1 Ai(n)

]
match asymptotically, i. e. are the same

for n→∞.

The following theorem collects a set of sufficient conditions for this plan to work out.

Theorem 3.17 ([12]). For a strictly increasing sequence of even positive integers
n, let rn be a positive integer and εn ∈ (0, 1/16). Let M(n) be a collection of
matchings in Kn such that none of these matchings is subset of another. Let µn :=∑
M∈M(n) Pr[AM ]. Suppose that for all n, M(n) satisfies

(i) |M | 6 rn for all M ∈M(n).

(ii) Pr[AnM ] < εn for all M ∈M(n).

(iii)
∑
M ′:An

M′∩A
n
M=∅ Pr[AnM ′ ] < εn for all M ∈M(n).

(iv)
∑
M : {i,j}∈M Pr[AnM ] < εn for all edges {i, j} in Kn.

(v)
∑
M ′∈M(n)

M

Pr
[
An−sσ(M ′)

]
< εn for each M ∈ M(n), where s = | supp(M)| and σ

is a permutation of [n] mapping supp(M) to {n− s+ 1, . . . , n}.

Then we have

Pr

 ⋂
M∈M(n)

AnM

 = e−µn+O(rnεnµn) for n→∞,

and if rnεnµn = o(1) for n→∞, we have

Pr

 ⋂
M∈M(n)

AnM

 =
(
1 +O(rnεnµn)

)
· e−µn for n→∞. (3.30)
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3.3. Random Matchings in Kn

In order to derive the asymptotics stated in the above theorem, we need bounds on
the auxiliary function y introduced in Proposition 3.13.

Lemma 3.18. Let y : (0, 1/4) → [1, 2] be as in Proposition 3.13. Then, for γ ∈
(0, 1/4), we have

y(ε) 6 1 + 6ε.

As with Proposition 3.13, the proof of this lemma is of analytical nature, so we defer
it to Appendix B (Lemma B.2).

Proof of Theorem 3.17. Let G(n) be the conflict graph for the events M(n).

By Theorem 3.10, G is a negative dependency graph. Note that the assumptions (ii)
and (iii) in Theorem 3.17 imply that the assumptions (3.19) of Lemma 3.15 hold for
the events generated by the matchings inM(n) with ε being equal to 2εn, so by part
(ii) of this lemma,

Pr
[ ⋂
M∈M(n)

AnM

]
> exp

−∑
M∈M(n)

(
Pr[AnM ]y(2εn) + Pr[AnM ]2y(2εn)2

) >

> exp

−∑
M∈M(n)

Pr[AnM ]y(2εn)−
∑

M∈M(n)

Pr[AnM ]εny(2εn)2

 =

= exp
(
−µn

(
y(2εn) + εny(2εn)2

))
> exp (−µn − 16εnµn) . (3.31)

Here, the second inequality follows from Pr[AnM ] < εn and the last is a consequence
of Lemma 3.18: y(γ) 6 1 + 6γ together with εn <

1
16 implies

y(2εn) + εny(2εn)2 6 1 + 12εn + εn + 24ε2
n + 144ε3

n < 1 + 16εn.

For upper bounds, we first observe that Theorem 3.14 yields that G(n) is a near-
positive dependency graph for the events in M(n): Assumption (i) in Theorem 3.17
precisely gives rn-boundedness ofM(n). Moreover,M(n) is 2εn-sparse: No matching
is subset of another by assumption, condition (3.16) is implied by assumptions (ii)
and (iii), condition (3.17) is implied by (iv) and conditon (3.18) is implied by (v).

Having the near-positive dependency graph from Theorem 3.14 at hand, an applica-
tion of Lemma 1.9 gives

Pr
[ ⋂
M∈M(n)

AnM

]
6

∏
M∈M(n)

(
1− e−2εny(4εn)−4ε2ny(4εn)2

y(4εn)−2rn · Pr[AnM ]
)
6

6 exp

−∑
M∈M(n)

e−2εny(4εn)−4ε2ny(4εn)2
y(4εn)−2rn · Pr[AnM ]

 =

= exp
(
− µne−2εny(4εn)−4ε2ny(4εn)2−8εnrny(4εn)

)
<

< exp
(
−µn

(
1−

(
2y(4εn) + 4εny(4εn)2 + 8rny(4εn)

)
εn
))

<

< exp (−µn + (7 + 20rn)εnµn) . (3.32)
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3. Applications of the Lopsided Lemma

Here, the second and third inequality use 1−x 6 e−x, the equality in between follows
from the definition of y and µn, and the last inequality follows from Lemma 3.18:
y(γ) 6 1 + 6γ gives

2y(4εn) + 4εny(4εn)2 + 8rny(4εn) 6
6 2 + 48εn + 4εn + 4 · 48ε2

n + 4 · 576ε3
n + 8rn + 192rnεn < 7 + 20rn

because εn < 1
16 .

From the lower and upper bounds in (3.31) and (3.32), we directly see that

Pr
[ ⋂
M∈M(n)

AnM

]
= e−µn+O(µnrnεn),

proving the first part of the theorem.

If rnεnµn = o(1) for n→∞, then for n→∞, both

e−16εnµn = 1 +O(rnεnµn) and e(8rn+7)εnµn = 1 +O(rnεnµn),

so the bounds give

Pr
[ ⋂
M∈M(n)

AnM

]
=
(
1 +O(µnrnεn)

)
· e−µn ,

which concludes the proof of the theorem. �

3.3.4 Enumeration of d-regular Graphs

We are going to apply the asymptotic counting method derived in the previous
section by showing one of the applications due to Lu and Székely ([12]): Deriving
the asymptotic number of labelled d-regular graphs on n vertices with a given lower
bound g on the girth for n→∞.

It was Bollobás in [3] who already provided the precise asymptotics for g = 3 using
a different method. He introduced the so-called configuration model, which shows to
be of advantage in our approach as well.

Definition 3.19. The degree sequence of a labelled n-vertex graph G with vertices
v1, . . . , vn is the sequence (d1, . . . , dn) := (degG(v1), . . . ,degG(vn)).

One can observe that if a sequence (d1, . . . , dn) of non-negative integers is a degree
sequence, then

∑n
i=1 di is even.

Definition 3.20 ([3]). Let (d1, . . . , dn) ∈ Zn>0 be a degree sequence of length n.
Then the configuration model of a random multigraph with given degree sequence
(d1, . . . , dn) is defined as follows:

– Let W :=
⋃n
i=1Wi be a fixed set of 2m =

∑n
i=1 di labelled vertices, where

|Wi| = di. We call those 2m vertices mini-vertices.

– A configuration F of W is a matching of cardinality m on the vertices in W .
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3.3. Random Matchings in Kn

– The multigraph associated to a configuration F of W is the graph on vertices
v1, . . . , vn where for all k, ` ∈ [n], the number of edges {vk, v`} is equal to the
number of edges in F connecting a mini-vertex in Wk to a mini-vertex in W`.
This identification is called the projection of F .

Choosing a random configuration F , this construction gives a random multigraph
with degree sequence (d1, . . . , dn).

Using this model and Theorem 3.17, we prove the following theorem:

Theorem 3.21 ([12]). Let d = d(n) > 3 and g = g(n) be integers such that

g5(d− 1)2g−3 = o(n)

for n → ∞. Then, the probability that a random d-regular multigraph as generated
by the configuration model has girth at least g > 1 is

(
1 + o(1)

)
· exp

− g−1∑
i=1

(d− 1)i

2i

 ,
and therefore, the number of d-regular graphs on n vertices with girth at least g > 3
is (

1 + o(1)
)
· exp

− g−1∑
i=1

(d− 1)i

2i

 (dn− 1)!!
(d!)n .

As indicated in the statement, the proof of the theorem allows both d and g to
slowly go to infinity. However, we suppress the dependence on n in the sequel and
only remark here that all steps can be done in the same way even if one takes the
dependencies on n in to account.

Proof. We work with the configuration model of a random multigraph on n vertices
with constant degree sequence (d, . . . , d), i. e. we consider matchings in the complete
graph Knd on the nd mini-vertices occurring in the configuration model. Let W
denote the set of those nd labelled mini-vertices and let W1, . . . ,Wn be the partition
of W where each Wi corresponds to one vertex vi of the multigraph via projection.
To estimate the probability in question, we apply Theorem 3.17.

For i ∈ [g − 1], let M(n)
i be the set of partial matchings in W whose projections

precisely give a cycle of length i. Let M(n) :=
⋃g−1
i=1 M

(n)
i . Then, the events that

we want to avoid are precisely the canonical events generated by the matchings in
M(n).

It is immediately seen that no matching in M(n) is subset of another because no
cycle is subset of another cycle.

We have ∣∣∣M(n)
i

∣∣∣ =
(
n

i

)
i!
2i · d

i(d− 1)i.

This can be seen as follows: There are
(n
i

)
choices for the vertices appearing in the

cycle after projection and i!
2i options for choosing the order in which they appear
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3. Applications of the Lopsided Lemma

(note that reversing an ordering does not change the cycle). Moreover, if we orient
the cycle, then for each vertex, there are d choices for the mini-vertex incident to
the incoming edge and d− 1 choices for the one incident to the outgoing edge.

For each matching M ∈M(n)
i , we have

Pr[AM ] = 1
(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) , (3.33)

so summing up gives

µn =
∑
M∈M

Pr[AM ] =
g−1∑
i=1

(
n

i

)
i!
2i

di(d− 1)i

(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) =

=
g−1∑
i=1

(d− 1)i

2i

i∏
`=1

d(n− `+ 1)
nd− 2`+ 1 6

g−1∑
i=1

(d− 1)i

2i

(
1 +O

(
i2

n

))
6

6

(
1 +O

(
g2

n

))
·
g−1∑
i=1

(d− 1)i

2i ,

where the asymptotics can be seen by writing the product in the form
∏

(1−x`) and
using the inequality

∏
(1− x`) > 1−

∑
x`, where x` = d`−2`−d+1

dn−2`+1 .

We now check the conditions in Theorem 3.17 one after another for rn = g − 1 and
εn = K′g3(d−1)g−2

n with some large constant K ′ for all n ∈ Z+. Obviously, for n large
enough, ε ∈ (0, 1/16) for sure.

Condition (i): M(n) is rn-bounded for all n ∈ Z+.

Matchings in M(n) correspond to cycles of lengths at most g − 1, so they are of
cardinality at most g − 1. Hence M(n) is rn-bounded and condition (i) holds.

Condition (ii): For all M ∈M(n), we have Pr[AM ] < εn.

This condition is clearly true by choice of ε and (3.33).

Condition (iii): For all M ∈M(n), we have
∑
M ′:AM′∩AM=∅ Pr[AM ′ ] < εn.

We distinguish cases according to the size of M and M ′. Remember that AM ′∩AM =
∅ is equivalent to M and M ′ conflicting.

Case 1: M ∈M(n)
1 .

This implies that M consists of a single edge e = {x, y} inside one of the parts, say
W`, corresponding to a vertex v` via projection.

Consider some M ′ ∈M(n)
1 conflicting M , then M ′ consists of one edge f in the same

part W` sharing exactly one mini-vertex with e. There are 2(d− 2) such f , and the
probability of the a corresponding event is Pr

[
A{f}

]
= 1

nd−1 .

Now take a matching M ′ ∈ M(n)
i conflicting M for some i > 2, then M ′ covers x

or y and corresponds to an i-cycle incident to the vertex v` after projection. The
number of ways to choose such a matching M ′ can be derived as follows: At first,
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3.3. Random Matchings in Kn

there are
(n−1
i−1
)

ways to choose the vertices different from v` on the cycle, which can
then be arranged in an oriented cycle together with v` in (i − 1)! ways. Let this
oriented cycle contain the vertices v`, vj1 , . . . , vji−1 in this order, corresponding to
sets W`,Wj1 , . . . ,Wji−1 of mini-vertices.

Choose whether M ′ shall be incident to x or y, say we choose x. We claim that there
are less than di−1(d−1)i ways to choose the edges of M ′: There are d ways to choose
a mini-vertex wj1 from Wj1 forming the edge {x,wj1}. Then there are (d− 1)d ways
to choose the next edge {w′j1 , wj2} with wj1 6= w′j1 ∈ Wj1 and wj2 ∈ Wj2 , etc. For
the last edge {w′ji−1

, w`}, there are only (d− 1)2 choices because we must not choose
w` = x. This procedure double-counts the matchings M ′ incident to both x and y,
so the result 2d · (d(d− 1))i−1 · (d− 1)2 = 2di−1(d− 1)i is an upper bound.

This gives a total of less than 2
(n−1
i−1
)
(i−1)!·di−1(d−1)i ways to choose a matching M ′

conflicting the edge e with a corresponding canonical event of probability Pr[AM ′ ] =
1

(nd−1)(nd−3)·...·(nd−2i+1) . Altogether, we obtain

∑
M ′∈M(n)

1 :
AM′∩AM=∅

Pr[AM ′ ] = 2(d− 2)
nd− 1 +

g−1∑
i=2

∑
M ′∈M(n)

i :
AM′∩AM=∅

Pr[AM ′ ] <

<
2(d− 2)
nd− 1 +

g−1∑
i=2

2
(n−1
i−1
)
(i− 1)! · di−1(d− 1)i

(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) 6

6
2(d− 2)
nd− 1 +

g−1∑
i=2

2(d− 1)i

nd− 1 < εn (3.34)

for K ′ large enough: K ′ > d − 1 is sufficient, for example. The second but last
inequality follows from writing

2
(n−1
i−1
)
(i− 1)! · di−1(d− 1)i

(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) = 2(d− 1)i

nd− 1 ·
i∏

`=1

(n− `)d
nd− `

(3.35)

and bounding each factor in the product by 1.

Case 2: M ∈M(n)
k for some k > 2.

This implies that the edges of M connect k classes Wj1 , . . . ,Wjk to form a cycle
vj1 , . . . , vjk after projection.

First consider a matching M ′ ∈M(n)
1 conflicting M , then M ′ is an edge inside one of

the classes Wj1 , . . . ,Wjk incident to an edge in M . In each of these classes, there are
2d− 3 edges incident to one of the two mini-vertices covered by M , giving k(2d− 3)
in total. The corresponding probabilities of the canonical events associated to one
of these single edges f are Pr

[
A{f}

]
= 1

nd−1 as in Case 1.

Now take a matching M ′ ∈ M(n)
i conflicting M for some i > 2, then one of the

k classes Wj1 , . . . ,Wjk contains two vertices x and y covered by M such that at
least one of them is also covered by M ′. Fixing one of the k classes, the arguments
from Case 1 imply that there are less than 2

(n−1
i−1
)
(i − 1)! · di−1(d − 1)i ways to
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choose such a matching M ′, so in total, there are less than k times as many choices
for M ′. Each of the associated canonical events AM ′ has probability Pr[AM ′ ] =

1
(nd−1)(nd−3)·...·(nd−2i+1) again, so we obtain

∑
M ′∈M(n)

k
:

AM′∩AM=∅

Pr[AM ′ ] = k(2d− 3)
nd− 1 +

g−1∑
i=2

∑
M ′∈M(n)

i :
AM′∩AM=∅

Pr[AM ′ ] <

<
k(2d− 3)
nd− 1 + k

g−1∑
i=2

2
(n−1
i−1
)
(i− 1)! · di−1(d− 1)i

(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) 6

6
(g − 1)(2d− 3)

nd− 1 + (g − 1)
g−1∑
i=2

2(d− 1)i

nd− 1 < εn, (3.36)

where the second but last inequality follows as before and the last inequality again
holds for K ′ large enough (K ′ = d − 1 is sufficient, for example). Together, (3.34)
and (3.36) affirm that condition (iii) holds.

Condition (iv): All edges {i, j} in Knd satisfy
∑
M : {i,j}∈M Pr

[
AndM

]
< εn.

Fix an edge {vk, v`} in the projection arising from an edge {wk, w`} connecting two
mini-vertices from different sets Wk and W`. Note that {wk, w`} cannot appear
in any of the matchings in M(n)

1 because those consist of edges inside one class of
mini-vertices.

We now bound the number of matchings M ∈ M(n)
i with i > 2 containing the edge

{wk, w`}. In addition to the classes Wk and W`, there are
(n−2
i−2
)

ways to choose the
other i − 2 classes, and there are (i − 2)! ways to arrange them and Wk and W` in
a cycle with Wk and W` appearing consecutively. Similarly to what we did when
checking the third condition, there are (d− 1)idi−2 ways to choose the mini-vertices
forming the edges of M , which gives a total of

(n−2
i−2
)
(i − 2)! · (d − 1)idi−2 ways to

choose M . Each of the canonical events associated to a matching M ∈ M(n)
i has

probability Pr[AM ] = 1
(nd−1)(nd−3)·...·(nd−2i+1) , which gives

∑
M : {wk,w`}∈M

Pr[AM ] =
g−1∑
i=2

(n−2
i−2
)
(i− 2)! · (d− 1)idi−2

(nd− 1)(nd− 3) · . . . · (nd− 2i+ 1) 6

6
1

d(n− 1)

g−1∑
i=2

(d− 1)i

nd− 1 < εn,

where the first inequality follows from (3.35) and the second one holds by definition
of εn if K ′ > 1, for example. This proves condition (iv).

Condition (v): For all M ∈ M(n) with s = | supp(M)| and a permutation σ of
[nd] mapping supp(M) to {nd− s+ 1, . . . , nd}, we have

∑
M ′∈M(n)

M

Pr
[
And−sσ(M ′)

]
< εn.

Remember that

MM :=
{
M ′ \M

∣∣∣∣∣ M ′ ∈M, M ′ 6= M, M ′ ∩M 6= ∅,
M ′ and M are not conflicting

}
.
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3.3. Random Matchings in Kn

If M ∈ M(n)
1 , then there is nothing to do because no other matching generating

a cycle contains a loop after projection, which is what such an M corresponds to.
So assume that M ∈ M(n)

i and its projection corresponds to a cycle Ci. Take
M ′ = M0 \M ∈M(n)

M with some M0 ∈
⋃
s<dM

(n)
s corresponding to a cycle Cs after

projection. We have i, s 6 g − 1.

The components of Ci ∩Cs having at least one edge are paths P1, . . . , Pt with t > 1.
There are 2

( i
2t
)

possible sets of t paths of length at least one in Ci: Choose the 2t
vertices partitioning the cycle into 2t paths and take every other part to form a path,
choosing from two options.

Let us now fix some paths and count how many cycles Cs generate exactly these
paths. To the vertices in P1, . . . , Pt, we add another ` vertices and edges joining
them with the paths. This gives that the number of possible cycles Cs generating
P1, . . . , Pt is upper bounded by

g−1−2t∑
`=1

(
n

l

)
(l + t− 1)!

2 · 2t,

where
(n
`

)
upper bounds the number of ways to choose the ` extra vertices, (l+t−1)!

2
accounts for the number of ways to arrange the paths and extra vertices in a cycle
and 2t counts the number of possible orientations of the t paths on the cycle.

We now count the number of matchings M0 giving one particular cycle Cs with the
mini-vertices in M ∩ M0 fixed. In the sets of mini-vertices corresponding to the
` extra vertices, we have d(d − 1) choices for the mini-vertices, while in the sets
corresponding to ends of the t paths, we only need to choose one other mini-vertex,
having d− 1 choices – hence there are d`(d− 1)`+2t options for choosing M0.

Now fix M0 such that M ′ = M \M0 ∈ M(n)
M and let s′ = 1

2 | supp(M ′)|. Let s, σ, `
and t be as above, then

Pr
[
And−sσ(M ′)

]
= 1

(nd− s− 1)(nd− s− 3) · . . . · (nd− s− 2s′ + 1) 6
1

(nd− 3g)`+t ,

where the inequality follows from 3g > s+ 2s′−1 and the fact that M ′ has s′ = `+ t
edges. Putting the above together, we get

∑
M ′∈M(n)

M

Pr
[
And−sσ(M ′)

]
6
bi/2c∑
t=1

2
(
i

2t

) g−1−2t∑
`=1

(
n

`

)
(`+ t− 1)!

2 · 2t · d
`(d− 1)`+2t

(nd− 3g)`+t . (3.37)

We now use the falling factorial notation (m)k = m!
(m−k)! . By the condition in the

inner sum and t > 1, we have ` + t − 1 6 g − 3, and hence also (` + t − 1)! 6
`!(`+ t− 1)t−1 6 `!(g− 3)t−1. Moreover,

(n
`

)
`! = (n)` and there is an absolute upper

bound K > (n)`d`
(N−3g)` . Using these observations, we can upper bound the right-hand
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3. Applications of the Lopsided Lemma

side of (3.37) by

bi/2c∑
t=1

(
i

2t

) g−1−2t∑
`=1

K(d− 1)g−1 2t(g − 3)t−1

(nd− 3g)t 6

6 K(d− 1)g−1
bi/2c∑
t=1

(
i

2t

)(2(g − 3)
nd− 3g

)t
6
Kg3(d− 1)g−1

nd− 3g < εn,

where the estimate of the sum relies on the fact that the largest term occurs at t = 1
for large enough n and there less than g terms. Moreover, we used that

(i
2
)
< i2

2 6
g2

2 ,
and εn satisfies the last inequality for large enough K ′. This concludes the assertion
of condition (v).

In order to conclude using (3.30), we need rnεnµn = o(1) for n→∞. We have

rnεnµn = (g − 1)K
′g3(d− 1)g−2

n

(
1 +O

(
g2

n

))
·
g−1∑
i=1

(d− 1)i

2i 6

6
K ′g5(d− 1)2g−3

n
·
(

1 +O
(
g2

n

))
= o(1)

for n→∞, affirming the desired. So Theorem 3.17, more precisely (3.30), gives the
desired asymptotics for the probability in question, namely

Pr

 ⋂
M∈M(n)

AM

 =
(
1 +O(rnεnµn)

)
· e−µn =

(
1 + o(1)

)
· exp

− g−1∑
i=1

(d− 1)i

2i

,
where the error term in µn can be neglected for n→∞ by the assumption. In total
there are (nd − 1)!! matchings of the nd mini-vertices – but as permuting one class
Wi of them does not change the projection, each multigraph is generated by (d!)n
matchings. Hence the number of d-regular graphs with girth at least g is

(
1 + o(1)

)
· exp

− g−1∑
i=1

(d− 1)i

2i

 (nd− 1)!!
(d!)n .

This concludes the proof of Theorem 3.21. �
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Chapter 4

Algorithmic Aspects of the Local
Lemma

As we explored in the previous chapters, the Lovász Local Lemma is a tool to prove
the existence of an object in a certain probability space that avoids a family of events.
From an algorithmic point of view, it is also of interest if one can design an algorithm
that finds one of the desired objects efficiently.

In this last chapter, we present two constructive approaches to the problem. The first
one is a rather general constructive proof of the Lovász Local Lemma due to Moser
and Tardos ([17]). It provides a randomised algorithm that generates an instance
avoiding all events under some mild assumptions on the underlying probability space
and the events considered.

For a more concrete algorithmic approach, we address the so-called acyclic edge-
colouring problem, which can be attacked using the non-constructive Lovász Local
Lemma. In [7], Esperet and Parreau came up with an efficient randomised algorithm
generating an acyclic edge-colouring of a given graph. Their result builds upon the so-
called “entropy compression” method, which was introduced by Moser in an earlier,
but less general attempt for an algorithmic proof of the Local Lemma ([16]).

4.1 A Constructive Proof of the Local Lemma

The problem that we are facing is the following: We are given a probability space Ω
and a set A of events and the goal is to find an element ω ∈ Ω such that no event in
A occurs.

To make the above problem algorithmically accessible, it is necessary to impose
some assumptions on the probability space and the events considered. One possible
specification is to consider a finite collection P of mutually independent random
variables on a fixed probability space Ω and only events that are determined by the
values of some of these random variables.

These assumptions are satisfied in many applications: When working with random
graphs, as we did in the previous chapters, for example, every edge could be modelled
by a random variable having value 1 if the edge is present and value 0 otherwise.
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4. Algorithmic Aspects of the Local Lemma

In the subsequent two sections, we show that the above assumptions are sufficient
for our purposes. The exposition closely follows the original paper [17] by Moser and
Tardos.

4.1.1 The Resampling Algorithm

In order to state the actual algorithm, we introduce some terminology.

Definition 4.1. Let P be a finite collection of mutually independent random vari-
ables in some probability space Ω.

(i) An event A is determined by a subset S ⊆ P if the values of the random
variables in S are sufficient to decide whether or not A occurs.

(ii) If A is determined by some subset S ⊆ P, we say that an evaluation of the
variables in S violates A if it makes A happen.

(iii) The minimal subset S ⊆ P that determines A is denoted by vbl(A).

The algorithm proposed by Moser and Tardos starts at some random point in Ω. As
long as there is a violated event A, resample the variables in vbl(A). If eventually, no
event is violated, then we are done. This idea is formalised in Algorithm 4.1 below.

Algorithm 4.1: The resampling algorithm ([17])

function sequential lll (P, A)
for all P ∈ P do

vP ← a random evaluation of P ;
end
while ∃A ∈ A: A is violated by (vP )P∈P do

pick an arbitrary violated event A ∈ A;
for all P ∈ vbl(A) do

vP ← a random evaluation of P ;
end

end
return (vP )P∈P ;

The critical point is to argue whether or not this algorithm is efficient or even ter-
minates. It is also a question how to measure efficiency: We assume that resampling
variables and checking whether an event is violated can be done efficiently, so that
the complexity of the algorithm is dominated by the number of resampling steps
that need to be done.

Assuming the conditions of the Lovász Local Lemma, we prove an upper bound on
the expected number of resampling steps done by the algorithm. This is the content
of Theorem 4.3.

The Local Lemma needs a dependency graph for the events in question. In the setting
that we introduced, we can define a dependency graph that we call the intersection
graph.
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4.1. A Constructive Proof of the Local Lemma

Definition 4.2. For a finite family A of events determined by a set of finitely many
mutually independent random variables P, the intersection graph G = (V,E) is the
graph defined by

V = A and E = {{A,B} |A,B ∈ A, vbl(A) ∩ vbl(B) 6= ∅}.

It can be easily seen that in the above setting, the intersection graph G is indeed a
dependency graph for the events in A.

Theorem 4.3 (Algorithmic Local Lemma, [17]). Let P be a finite set of mu-
tually independent random variables in a probability space, let A be a finite set of
events determined by these variables and let G be their intersection. If there exist
real numbers (xA)A∈A ∈ (0, 1)|A| such that for all A ∈ A, we have

Pr[A] 6 xA ·
∏

B∈NG(A)
(1− xB), (4.1)

then the following holds true:

(i) There exists an assignment of values to the variables in P not violating any of
the events in A.

(ii) The randomised Algorithm 4.1 resamples an event A ∈ A at most an expected
xA

1−xA times before it finds such an evaluation, and hence the expected number
of resampling steps is at most

∑
a∈A

xA
1−xA .

The proof of this theorem is given in the next section.

4.1.2 Execution Logs and Witness Trees

To get our hands on what the algorithm actually does, we need to keep a record of
the steps it performs.

In each iteration of the while-loop, the resampling algorithm, Algorithm 4.1, selects
some violated event. The selection itself can be made deterministic by implementing
any concrete rule, so that the choice of which variables to resample depends only on
the current values (vP )P∈P of the random variables. For a formal bookkeeping of
the choices, we define the so-called execution log.

Definition 4.4 ([17]). The execution log of one execution of the resampling algo-
rithm is the – possibly partial – map C : N → A such that for all n, we have the
following: In the n-th iteration of the while-loop, the event C(n) is picked and and
its variables are resampled.

Note that C may be only partial because the algorithm may terminate. If it termi-
nates after k steps, we have an execution log of the form C : [k]→ A. Also observe
that C may be seen as a random variable depending on the random evaluations done
in course of the resampling algorithm.

In order to proof Theorem 4.3, we bound the expected number of times an event
occurs in the execution log. To this end, we introduce witness trees. Recall that
N+
G (v) := NG(v) ∪ {v} is the inclusive neighbourhood of a vertex v in G.
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4. Algorithmic Aspects of the Local Lemma

Definition 4.5 ([17]). Let A be a finite family of events determined by mutually
independent random variables in P and let G be their intersection graph.

(i) A witness tree τ = (T, σT ) is a finite rooted tree T = (V,E) with a labelling
σ : V → A of its vertices such that the children of any vertex u ∈ V have labels
in N+

G (u) only.

(ii) A witness tree is proper if the children of each vertex have pairwise distinct
labels.

(iii) Let C be an execution log of length at least t. The witness tree τC(t) associated
to step t is the witness tree constructed as follows:

– Let τ (t)
C (t) be an isolated root vertex labelled C(t).

– For each i = t−1, . . . , 1, do the following: If there is no vertex v ∈ τ (i+1)
C (t)

such that C(i) ∈ N+
G (v), then let τ (i)

C (t) = τ
(i+1)
C (t).

If there is such a vertex v, then choose one with maximum distance from
the root in τ

(i+1)
C (t) and attach a child labelled C(i) to it, constructing the

witness tree τ (i)
C (t).

– Let τC(t) = τ
(1)
C (t).

(iv) A witness tree τ occurs in an execution log C if there exists t ∈ N such that
τ = τC(t).

If τ = (T, σT ), we write V (τ) for the set of vertices of T and [v] = σT (v) for the label
of a vertex v ∈ V (τ) in order to keep notation short.

The connection from witness trees to the number of times an event appears in an
execution log is the following: If A = C(t) for some execution log C and a step t ∈ N,
then the witness tree τC(t) has its root labelled A. Moreover, we will observe that
any two witness trees occurring in an execution log with identically labelled roots
are different. These facts together with the following two lemmas are the basis of
the proof of Theorem 4.3.

Lemma 4.6 ([17]). Let A be a finite family of events determined by mutually inde-
pendent random variables in P. Let τ be a fixed witness tree and let C be a random
execution log produced by the algorithm. Then, we have the following:

(i) If τ occurs in C, then τ is proper.

(ii) The probability that τ appears in C is at most
∏
v∈V (τ) Pr

[
[v]
]
.

Proof. Assume that τ occurs in the execution log C so that τ = τC(t) for some t.
For a vertex v ∈ V (τ), let d(v) denote the distance of vertex v from the root of τ
and let q(v) be the index of the step at which v is attached to τC(t), i. e. the largest
index q such that v is contained in τ

(q)
C (t).

For part (i), assume for contradiction that there are two vertices u and v of equal
depth in τC(t) such that vbl([u])∩vbl([v]) 6= ∅, which in particular is the case if they
are labelled identically. Without loss of generality, assume q(v) < q(u) and let w be
the parent node of v.
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4.1. A Constructive Proof of the Local Lemma

At step q(v), when we add vertex v to the tree τ (q(v)+1)
C (t), we choose a vertex with

label in N+
G ([v]) of maximum depth and attach v to it. Observe that u is already

present at step q(v), [u] ∈ N+
G ([v]) and d(u) = d(v) = d(w) + 1 > d(w), so v is for

sure not attached to w, a contradiction. This proves (i).

For (ii), Moser and Tardos introduce a routine called τ -check ([17]): For a witness
tree τ , consider the vertices vertex v ∈ V (τ) one after another following an order
of decreasing depth, take a random evaluation of the variables in vbl([v]) and check
whether or not this evaluation violates [v]. We say that the τ -check passes if all
events are violated when checked.

For establishing a relation between the τ -check and the resampling algorithm, we
need to fix a random source, i. e. a random list P (0), P (1), . . . of values for each
variable P ∈ P. Every time we request a new evaluation of a variable P , we take
the first unused element of the corresponding list in the random source.

We claim that if a witness tree τ occurs in the execution log generated by the
algorithm using a fixed random source, then the τ -check using the same random
source passes.

Assuming this claim for a moment, we see that the probability that a fixed witness
tree τ occurs in the execution log is at most the probability that the τ -check passes.
The latter can be trivially calculated to be

∏
v∈V (τ) Pr

[
[v]
]
, which proves part (ii).

To prove the claim, we first look at one step of the τ -check: Fix a witness tree
τ = τC(t), a vertex v ∈ V (τ) and a random variable P ∈ vbl([v]). Moreover, let
Sv(P ) denote the set of all w ∈ V (τ) such that d(w) > d(v) and P ∈ vbl([w]). Then
Sv(P ) contains vertices that were considered before v in course of the τ -check, and
more precisely it contains all of those where P was resampled: According to the
first part of this lemma, no vertex w of equal depth can have P ∈ vbl([w]). Hence
resampling P at vertex v in course of the τ -check gives the value is P (|Sv(P )|) (note
that the list starts at P (0)), and this is true for all P ∈ vbl([v]).

Similarly, we want to check the values of all P ∈ vbl([v]) when the algorithm does step
q(v). Note that all vertices w satisfying P ∈ vbl([w]) ∩ vbl([v]) and corresponding
to events that were resampled before [v] by the algorithm are of depth at least
d(v)+1 because they could at least be attached to v. Equally, no vertex w satisfying
P ∈ vbl([w]) ∩ vbl([v]) and corresponding to an event that was resampled after [v]
and before step t by the algorithm can have depth larger than or equal to d(v): If
so, when adding v during the construction of τ , we could have attached v to w.

Hence Sv(P ) precisely contains all vertices w satisfying P ∈ vbl(w) ∩ vbl(v) corre-
sponding to events that were resampled before [v] by the algorithm – so before the
algorithm resamples [v], all P ∈ vbl([v]) have the value P (|Sv(P )|) (note that here
P (0) is used for the initial sampling). The necessity of resampling the variables in
vbl([v]) comes from [v] being violated by the values P (|Sv(P )|), and this is exactly the
condition for the τ -check to pass at vertex v, which proves the claim. �

A way of randomly constructing labelled trees is via a so-called Galton-Watson pro-
cess, a multi-step process defined as follows: Fix an event A ∈ A and real numbers
(xB)B∈A ∈ (0, 1)|A|. Start by producing a single vertex labelled A in the first step.
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4. Algorithmic Aspects of the Local Lemma

In each of the following steps, go through all vertices v added in the previous step
and add children to them in the following way: For all events B ∈ NG([v]), we attach
a child labelled B to v with probability xB, and with probability 1− xB, we do not.
This process may stop at some point because there are no new vertices added in a
step, or it may continue infinitely.

One can observe that a Galton-Watson process can produce a proper witness tree,
but this is not necessarily always the case. The next lemma calculates the probability
of getting a fixed proper witness tree.

Lemma 4.7 ([17]). Let A be a finite family of events determined by mutually inde-
pendent random variables in P and let G be their intersection graph. Moreover, let
τ be a witness tree such that its root is labelled by A ∈ A and let (xB)B∈A ∈ (0, 1)|A|.
The probability pτ that the Galton-Watson process described above constructs the tree
τ is given by

pτ = 1− xA
xA

∏
v∈V (τ)

x′[v],

where x′B := xB ·
∏
C∈NG(B)(1− xC) for all B ∈ A.

Proof. For every vertex v ∈ V (τ), let Dv ⊆ N+
G (v) be the subset of all events that

occur as a label of a child node of v. In the step of the Galton-Watson process
where we add children of v, the probability that they appear as in τ is given by∏

[u]∈Dv x[u] ·
∏
N+
G ([v])\Dv(1− x[u]), and extending this to all probabilistic choices by

multiplying the expressions for all v ∈ V (τ), we get

pτ =
∏

v∈V (τ)

 ∏
[u]∈Dv

x[u] ·
∏

[u]∈N+
G ([v])\Dv

(
1− x[u]

) =

=
∏

v∈V (τ)

 ∏
[u]∈Dv

x[u]
1− x[u]

·
∏

[u]∈N+
G ([v])

(
1− x[u]

) =

= 1− xA
xA

·
∏

v∈V (τ)

 x[v]
1− x[v]

·
∏

[u]∈N+
G ([v])

(
1− x[u]

) ,
where the last equation follows from the fact that taking a product over all children
of all vertices in τ is the same as taking a product over all vertices but the root,
which is not a child of any other vertex.

Replacing inclusive by exclusive neighbourhoods and using the definition of x′B, this
gives

pτ = 1− xA
xA

·
∏

v∈V (τ)

x[v] ·
∏

[u]∈NG([v])

(
1− x[u]

) = 1− xA
xA

·
∏

v∈V (τ)
x′[v],

which is what the lemma claimed. �

In the proof of Theorem 4.3, we now connect the above two lemmas.
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Proof of Theorem 4.3. Let P, A and G be as in the theorem statement and take
real numbers (xA)A∈A ∈ (0, 1)|A| such that the assumption (4.1) holds.

Let NA be the the random variable (depending on the random resamplings of the
variables in P by the algorithm) counting how may times the event A is resampled
during one execution of the resampling algorithm. We already observed before that
NA is exactly the number of times that A appears in the execution log C, and every
such appearance corresponds to a witness tree with root labelled A.

Moreover, it is easy to see that if τC(i) and τC(j) with i > j are two witness trees
with root labelled A, then they are different: The part of the log until step i has for
sure strictly more occurrences of the event A than the part until step j, and hence
the same is true for the corresponding witness trees.

Consequently, if we let TA denote the set of all proper witness trees with root labelled
A, we can calculate the expected value of NA by summing the probability that a
witness tree occurs in the execution log over all trees in TA:

E[NA] =
∑
τ∈TA

Pr[τ occurs in C] 6
∑
τ∈TA

∏
v∈V (τ)

Pr
[
[v]
]
6
∑
τ∈TA

∏
v∈V (τ)

x′[v],

where the first inequality follows from part (ii) in Lemma 4.6 and the second is
assumption (4.1). By Lemma 4.7, we can replace the last product to get

E[NA] 6
∑
τ∈TA

xA
1− xA

pτ 6
xA

1− xA
,

where the last inequality follows from the fact that each Galton-Watson process
defines exactly one tree, so the sum over all probabilities pτ is at most one.

This proves that each event A is resampled at most an expected number of xA
1−xA

times, and linearity of expectation gives a total expected number of resampling steps
of
∑
A∈A

xA
1−xA , proving part (ii) of the theorem.

For part (i), note that the above implies that there are random sources on which the
algorithm terminates in one of the desired assignments of the variables in P after
at most

∑
A∈A

xA
1−xA many steps, which is a finite number and hence finishes the

algorithmic proof of the Local Lemma. �

4.2 Acyclic Edge-Colouring

While the goal of the previous section was to derive a rather general algorithmic
approach to the Local Lemma of, another strategy is to focus on one particular
problem and make use of the extra structure coming with the specification. In this
section, we do the latter and turn to acyclic edge-colouring, which is defined as
follows.

Definition 4.8. Let G = (V,E) be a graph.

(i) An acyclic edge-colouring is a proper colouring of the edges E such that there
is no two-coloured cycle.
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4. Algorithmic Aspects of the Local Lemma

(ii) The acyclic chromatic index of G, denoted a′(G) is the smallest number of
colours needed in an acyclic edge-colouring of G.

In other words, an acyclic edge-colouring is a colouring such that the union of any
two colour classes is a forest.

In [8], Fiamč́ık conjectured that for a graph G with maximum degree ∆, the acyclic
chromatic index satisfies a′(G) 6 ∆ + 2, i. e. a bound only one larger than Vizing’s
bound for proper edge-colourings.

Using the Lovász Local Lemma, one can prove bounds on the acyclic chromatic index
of a graph G depending on the maximum degree ∆, as for example a′(G) 6 16∆
([14]). For an algorithmic approach, we design an algorithm that colours the edges
more or less randomly, always conducting correction steps if acyclicity is violated.
Using the idea of entropy compression enables us to analyse the algorithm and prove
conditions under which we get a positive probability that the algorithm halts, giving
rather strong bounds on a′(G) algorithmically.

4.2.1 The Algorithmic Approach

The algorithm for generating an acyclic edge-colouring is Algorithm 4.2. Its idea is
simple: For a graph G = (V,E) with ordered edges E = {e1, . . . , em} and maximum
degree ∆ and a real number γ > 1, we colour the graph from K := d(2 + γ)(∆− 1)e
many colours by an iterative process. Throughout the algorithm, we maintain the
set Xi of uncoloured edges and a colouring Φ : E → [K] ∪ {0}, where Φ(ej) = 0
encodes that ej is not yet coloured.

More precisely, we choose an uncoloured edge ej ∈ Xi for colouring at step i. There
may be colours appearing on edges incident to ej and colours generating two-coloured
cycles. We a priori want to avoid colours on incident edges and those generating a
2-coloured 4-cycle. There may still be larger 2-coloured cycles generated, but we
perform a separate correction step in this case.

Definition 4.9. For a graph G = (V,E) and a partial colouring Φ: E → [K]∪ {0},
the set colΦ(ej , G) of neighbouring colours of an edge ej = {u, v} ∈ E contains
all colours Φ(e) 6= 0, where e = {x, y} ∈ E, such that either |e ∩ ej | = 1, or
{x, u}, {y, v} ∈ E and Φ({x, u}) = Φ({y, v}) 6= 0.

x y

v

x′ y′

u

1 1

2

3 3

5

6 6

8

ej
colΦ(ej , G) = {1, 2, 3, 5, 6, 8}

Figure 4.1: Neighbouring colours of an edge ej .
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4.2. Acyclic Edge-Colouring

Definition 4.9 captures exactly what we indicated before: The neighbouring colours
are those that we want to avoid a priori. In the example in Figure 4.1, colours
{1, 3, 5, 6} are forbidden because of edges incident to ej and colours {2, 8} are for-
bidden because they would generate cycles of length 4.

Coming back to the algorithm, we colour the edge ej using a random colour from
[K] \ colΦ(ej , G). As already indicated, this may still generate two-coloured cycles
of length at least 6. If so, we choose one of them and uncolour all but the second
and third edge after ej . By the deterministic orientation of the chosen cycle, this is
unambiguous.

This particular “correction step” of uncolouring all but two edges on a cycle on the
one hand guarantees that after each step, the partial colouring remains acyclic, and
on the other, we will see that it has certain advantages when it comes to keeping a
useful record of the steps done by the algorithm. The same is true for the particular
choice of a non-coloured edge ej .

Algorithm 4.2: Acyclic edge-colouring ([7])

function acyclic colouring(G, γ)
K ← d(2 + γ)(∆− 1)e, X ← E, Φ(E)← 0;
while X 6= ∅ do

pick ej ∈ X with minimum j;
Φ(ej)← random colour from [K] \ colΦ(ej , G);
if (G,Φ) has a 2−coloured cycle C do

let C = ejei2 . . . ei2k such that i2 < i2k;
Φ({ej , ei4 , . . . , ei2k})← 0;
X ← X ∪ {ei4 , . . . , ei2k};

else
X ← X \ {ej};

end if
end while
return Φ

Note that if there is a 2-coloured cycle C, it can always be represented as C =
ejei2 . . . ei2k with i2 < i2k by choosing the right orientation. The particular choice of
C is not important – this could be made deterministic by implementing any concrete
rule as for example choosing the cycle C with lexicographically smallest (i2, . . . , i2k).

Of course, nothing forces Algorithm 4.2 to terminate – if the input γ is too small, it
may even be the case that it never terminates. However, we will prove the following
theorem.

Theorem 4.10 ([7]). Let ` > 1 be a fixed integer and let k = max{2, `}. Let τ be
the unique root of the polynomial P (x) = (2k−3)x2k+2−(2k−1)x2k+x4−2x2 +1 in
the open interval (0, 1). Then there is a positive probability for Algorithm 4.2 to halt
if γ = τ2k−τ2+1

τ−τ3 and G has maximum degree ∆ and girth at least 2`+1. In particular,
every such graph has an acyclic edge-colouring with at most d(2+γ)(∆−1)e colours.
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4.2.2 Entropy Compression & Analysis of the Algorithm

To start with, we describe the idea of the so-called entropy compression method
([18]). We are given an algorithm that modifies an object A step-by-step, using
random choices to improve A.

We model these random choices by a random input string F such that in each step,
the algorithm cuts off a prefix of F , leaving F ′ for the subsequent iterations, and
deterministically improves A to A′ using the bits cut off from F as a random source.

The key idea is to make sure that no information is lost when doing such a step –
which can be achieved by keeping a history H ′ of all previous steps such that A and
F can be reconstructed from A′, F ′ and H ′.

In general, the goal is that A′, F ′ and H ′ compress the information of A and F . This
can be measured using concepts as for example Shannon entropy, which – loosely
speaking – measures the amount of information contained in a random string. If in
each step, this entropy is reduced by an additive constant, we see that the process
cannot go on forever, forcing the algorithm to halt.

In our specific situation, we get to the conclusion by slightly changing the argument.
Note that it depends only on the random input string F whether or not the modified
algorithm halts. We are able to show that for large enough t, the set Ft of strings
F such that the algorithm did not halt at step t is of smaller cardinality than the
number of possible states and histories (A′, F ′, H ′) at step t, allowing the conclusion
that there are strings F such that the algorithm halts after at most t steps.

Adjusting the Algorithm for Entropy Compression

For a given input (G, γ), the only random choices that Algorithm 4.2 does is to colour
an edge ej randomly from the set [K] \ colΦ(ej , G) in each step. We first prove that
this set of available colours is large.

Lemma 4.11 ([7]). For every graph G = (V,E) with maximum degree ∆ and a
partial edge-colouring Φ : E → [K] ∪ {0}, we have colΦ(e,G) 6 2(∆ − 1) for all
e ∈ E.

Proof. Recall that the neighbouring colours colΦ(e,G) are those appearing either
on edges incident to e or those that – assigned to e – would generate a 2-coloured
4-cycle.

Let e = {u, v}. The maximum degree is ∆, so both u and v are incident to at most
∆− 1 edges other than e, which gives an upper bound of 2(∆− 1) different colours
of the first type. Note that this bound is achieved only if all colours appearing on
edges incident to u are pairwise different from colours appearing on edges incident
to v.

For the second type, we need to count colours on edges e′ = {x, y} such that both
{u, x}, {v, y} ∈ E and Φ({u, x}) = Φ({v, y}) 6= 0. In particular, for each such edge
e′, we have edges {u, x} and {v, y} incident to u and v of the same colour – so this
colour was counted twice among colours of the first type. Altogether, this proves
colΦ(e,G) 6 2(∆− 1). �
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Having Lemma 4.11 at hand, we see that in each colouring step, the algorithm chooses
a random colour from a set of |[K] \ colΦ(e,G)| > d(2 + γ)(∆ − 1)e − 2(∆ − 1) =
dγ(∆ − 1)e many colours. Hence for colouring an edge ej in step i, it is sufficient
to have a random number Fi ∈ {1, . . . , dγ(∆− 1)e} and to assign the Fi-th smallest
element of [K] \ colΦ(ej , G) to the edge ej .

Consequently, the random choices in t steps of the algorithm can be modelled by
inputting a random vector F ∈ {1, . . . , dγ(∆−1)e}t and choosing colours as described
above.

Keeping a Record of the Steps

For given inputs, let Xi and Φi denote the uncoloured edges and the partial colouring
after step i, respectively. Knowing the uncoloured edges determines the edge ej
coloured at step i because we choose it such that j is minimal. So the only thing
we need to document is whether there the colouring in step i generates a 2-coloured
cycle or not.

To do so, we define a vector R with entries Ri corresponding to steps i as follows: If
the edge in ej chosen in the step i is coloured by the algorithm without generating a 2-
coloured cycle, we set Ri = ∅. Otherwise, there is a 2-coloured cycle C = ejei2 . . . ei2k
of length 2k for some k > 3 on which the algorithm does the correction step. Note
that the algorithm orients the cycle such that i2 < i2k.

There are at most (∆− 1)2k−2 oriented cycles of the form ejei2 . . . ei2k with i2 < i2k,
so ordering them lexicographically, we can identify C as the `-th cycle for some
` 6 (∆− 1)2k−2. In this case, we set Ri = (k, `).

The following two lemmas prove that if we run the modified algorithm on an input
vector F ∈ {1, . . . , dγ(∆ − 1)e}t for t steps, then F is uniquely determined by the
record R and the colouring Φt.

Lemma 4.12 ([7]). After each step i ∈ [t], the set Xi is uniquely determined by the
record (Rj)j6i.

Proof. We proceed by induction on i. For i = 1, i. e. after the first step, edge e1 is
coloured, so X1 = E \ {e1}.

Assume we know Xi for some i < t and let j = min{j′ | ej′ ∈ Xi}. If Ri+1 = ∅, then
the algorithm coloured the edge ej , so Xi+1 = Xi \ {ej}.

If Ri+1 = (k, `), then we can find the `-th oriented cycle of length 2k in G containing
ej , say C = ejei2 . . . ei2k , with i2 < i2k. We know that in this case, Xi+1 = Xi \
{ei4 , . . . , ei2k}. �

Lemma 4.13 ([7]). For all i ∈ [t], the map (Fj)j6i 7→ ((Rj)j6i,Φi), namely the
map assigning the input F to the record and the partial colouring after i steps of the
algorithm, is injective.

Proof. We again proceed by induction on i. After one step, corresponding to i = 1,
edge e1 is coloured using colour Φ1(e1). But this is exactly F1.
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Assume that for some i < t, (Fj)j6i is uniquely determined by ((Rj)j6i,Φi). The
record (Rj)j6i+1 uniquely determines Xi and Xi+1 by Lemma 4.12. In particular, we
know the edge ej chosen for colouring in step i+1: Its index j is given by j = min{j′ |
ej′ ∈ Xi}. To conclude by induction, we need to reconstruct Fi+1 and Φi.

To start with, assume that Ri+1 = ∅. Then the algorithm colours ej using the
Fi+1-th colour from [K] \ colΦi(ej , G) in step i+ 1. Turning this around, we can see
that

Fi+1 = Φi+1(ej)− |{c ∈ colΦi+1(ej , G) | c < Φi+1(ej)}|, (4.2)

where we used that colΦi(ej , G) = colΦi+1(ej , G). Moreover, Φi is obviously recon-
structed from Φi+1 by setting the colour of ej to zero.

If Ri+1 = (k, `), then a cycle C = ejei2 . . . ei2k that we can reconstruct from k
and ` as in the proof of Lemma 4.12 was created by colouring ej in step i + 1.
Since in this case, the algorithm uncolours all the edges in C but ei2 and ei3 , we
know that Φi = Φi+1 on E \ C, Φi(ei2) = Φi(ei4) = . . . = Φi(ei2k) = Φi+1(ei2)
and Φi(ei3) = Φi(ei5) = . . . = Φi(ei2k−1) = Φi+1(ei3), which reconstructs Φi from
Φi+1. Moreover, we know that the colour assigned to ej in step i + 1 before the
correction step must have been Φi+1(ei3), so using Φi+1(ei3) instead of Φi+1(ej) in
(4.2) reconstructs Fi+1 and hence finishes the proof. �

Turning back to how we formulated the method of entropy compression in the intro-
duction, Lemma 4.13 shows that keeping H = ((Rj)j6t,Φt) as a history of the first
t steps of the algorithm is a good choice when it comes to reconstructing the input.
Moreover, the subsequent section shows that this “bookkeeping” provides enough
compression to conclude.

Counting non-terminating Inputs: Dyck Words and Rooted Trees

Let Ft be the set of input vectors F ∈ {1, . . . , dγ(∆− 1)e}t such that the algorithm
does not halt after t steps. As pointed out in the introduction, the goal is to bound
|Ft|. If we denote by Rt the set of records generated by inputs from Ft, we can prove
the following lemma.

Lemma 4.14 ([7]). Let G be a graph on m edges and let Ft be defined as above.
Then |Ft| 6 (K + 1)m · |Rt|.

Proof. By Lemma 4.13, there is an injection

Ft → Rt × {Φt | Φt is a partial colouring of G},

and as there are (K + 1)m partial colourings of m edges, the postulated inequality
|Ft| 6 (K + 1)m · |Rt| follows. �

For an easier counting, we convert records R ∈ Rt to binary strings following the
approach of Esperet and Parreau ([7]). To do so, we need an auxiliary function θk
on words w = w1w2 . . . w2k−2 of length 2k − 2 with wi ∈ [∆− 1], namely

θk(w) = 1 +
2k−2∑
i=1

(wi − 1)(∆− 1)i−1.
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This function θk maps the words of the prescribed form to {1, . . . , (∆− 1)2k−2}, and
it is bijective. Using this function, we construct three maps whose concatenation
transforms a record R ∈ Rt to a binary string, namely

R 7→ R∗ 7→ R•
κ7→ R◦,

defined by the following:

– R∗ = (R∗i )i6t is obtained from R = (Ri)i6t by setting R∗i = 0 if Ri = ∅ and
R∗i = 0 ◦ θ−1

k (`) if Ri = (k, `), where ◦ denotes the concatenation of words.
Remember that ` 6 (∆− 1)2k−2, so this is well-defined.

– R• is obtained from R∗ by concatenation of all elements of R∗, which can be
seen as a word over the alphabet {0, . . . ,∆− 1}.

– R◦ is obtained from the word R• by keeping zeros and replacing non-zero letters
by 1, i. e. by element-wise application of κ defined by κ(x) = 0 if x = 0 and
κ(x) = 1 otherwise.

The resulting binary stringsR◦ are not completely arbitrary, they are so-called partial
Dyck words, as we prove in Lemma 4.16.

Definition 4.15. (i) A partial Dyck word is a word w on the alphabet {0, 1} such
that any prefix of w contains at least as many zeros as ones.

(ii) A Dyck word is a partial Dyck word that contains the same number of zeros
and ones.

(iii) A descent in a partial Dyck word is a maximal sequence of consecutive ones.

Dyck words have an interpretation as paths, where a zero indicates “up” and a one
indicates “down”, which is why we call a sequence of ones descent.

Lemma 4.16 ([7]). If Algorithm 4.2 coloured r edges and generated a record R ∈ Rt
after t steps, then the word R◦ is a partial Dyck word with t zeros and t − r ones.
Moreover, all descents in R◦ are even, and if G has girth at least 2` + 1 for some
` > 1, then all descents in R◦ have length at least max{4, 2`}.

Proof. Note that by construction of R◦, its zeros correspond exactly to the zeros in
R∗, and ones correspond to non-zero letters in R∗. Recall that every R∗i consists of
exactly one zero and, if there was a 2-coloured cycle of length 2k generated at step
i, an additional word of length 2k − 2 on the alphabet {1, . . . ,∆− 1}.

Consequently, R◦ is a concatenation of words of the form 012k−2, which can be
interpreted as follows: The zero corresponds to colouring an edge, while each one
corresponds to uncolouring an edge, following the algorithm chronologically. Taking
this into account, it is clear that R◦ is a partial Dyck word: Edges can only be
uncoloured if they were coloured previously, so every prefix has to contain more
zeros than ones.

For the total number of zeros, note that there is one zero in each R∗i , so there are t
in total. The number of ones equals the total number of uncolouring steps, which is
equal to t− r: t edges were coloured in total, and r remain coloured in the end.
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The above also implies that all descents are of the form 12k−2, where 2k is the length
of a generated two-coloured cycle in G, i. e. 2k > 6 and of course 2k > 2`+ 2 by the
condition on the girth of G. Altogether, descents are all even and of length at least
max{4, 2`}. �

For a non-empty set D of positive integers and positive integers t and r 6 t, let
Ct,r,D denote the number of partial Dyck words with t zeros, t − r ones and all
descents having lengths in D. Similarly, let Ct,D be the number of Dyck words with
all descents having lengths in D. Using this notation, the above lemma immediately
leads to the following extension of Lemma 4.14:

Lemma 4.17. Let G be a graph on m edges with girth at least 2` + 1, let k =
max{2, `} and let Ft be defined as before. Then with D = 2N + 2k,

|Ft| 6 (K + 1)m ·
m−1∑
r=0

(∆− 1)t−r · Ct,r,D.

Proof. By Lemma 4.14, we have |Ft| 6 (K + 1)m · |Rt|, so it suffices to prove the
inequality |Rt| 6

∑m−1
r=0 (∆− 1)t−r · Ct,r,D.

Note that the maps associated to R 7→ R∗ and R 7→ R• are both bijective, while
κ : R• 7→ R◦ is many-to-one. More precisely, we have κ−1(1) = {1, . . . ,∆ − 1} and
κ−1(0) = 0. By Lemma 4.16, every R◦ is a partial Dyck word containing t− r ones
for some r ∈ {0, . . . ,m− 1}, hence there are at most (∆− 1)t−r different pre-images
R•. Moreover, Lemma 4.16 also proves that descents in R◦ are even and of length
at least 2k, i. e. have lengths in D.

Altogether, summing up over all different R◦ with R ∈ Rt and grouping them
according to the value of r gives the desired |Rt| 6

∑m−1
r=0 (∆− 1)t−r · Ct,r,D. �

By the above lemma, we now need to bound Ct,r,D, the number of partial Dyck words
with some properties. The subsequent lemma reduces this to counting slightly longer
Dyck words and further transforms this to counting rooted trees on a fixed number
of vertices.

Lemma 4.18. Let t and r 6 t be positive integers and let D 6= {1} be a non-empty
set of positive integers. Then:

(i) If s = minD \ {1}, we have Ct,r,D 6 Ct+r(s−1),D.

(ii) The number Ct,D is equal to the number of rooted trees on t + 1 vertices such
that the number of children of each vertex is in D ∪ {0}.

Proof. For part (i), note that from any partial Dyck word w with t zeros, t − r
ones and all descents in D, we can construct a Dyck word of length 2t + 2r(s − 1)
by concatenating w with (0s−11s)r. This adds r(s − 1) zeros and rs ones, so the
total length is 2t− r+ r(s− 1) + rs = 2t+ 2r(s− 1). This identification is injective
because each Dyck word of lenght 2t + 2r(s − 1) ending in (0s−11s)r corresponds
uniquely to one of the prescribed partial Dyck words, hence Ct,r,D 6 Ct+r(s−1),D,
proving part (i).

62



4.2. Acyclic Edge-Colouring

For part (ii), start with a rooted tree on t+1 vertices such that the number of children
is in D for all vertices. Passing the vertices in a reversed breadth-first order, encode
a vertex with i children by 1i0, and when coming to the root, leave out the last zero.
Concatenating all those strings gives a Dyck word of length 2t because every vertex
but the root, which is not counted at all, is counted as a parent by adding a zero
to the string before it is counted as a child of some other vertex by adding a one.
Moreover, a maximal sequence of ones corresponds to children of some vertex, hence
its length is in D.

This construction can also be reversed: Cut a given Dyck word into blocks of the
form 1i0. For each such block, choose the i “oldest” vertices that do not yet have
a parent and join them at a common parent. If i = 0, then simply add a new leaf
vertex. This concludes part (ii). �

In order to count rooted trees with the properties described above, we apply a
corollary of a result by Drmota. For a proof of the theorem, we point to [5], but we
deduce the corollary that we need here.

Theorem 4.19 ([5, Thm. 5]). Let ϕ(x) =
∑
n>0 ϕnx

n be a power series with non-
negative coefficients such that ϕ0 > 0 and ϕj > 0 for some j > 2 and let its radius
of convergence be R > 0. Set d = gcd{j > 0 | ϕj > 0} and suppose that there
exists τ ∈ (0, R) such that τϕ′(τ) = ϕ(τ). Moreover, let y(x) =

∑
n>0 ynx

n satisfy
y(x) = xϕ(y(x)). Then yn = 0 for n 6≡ 1 (mod d), and else

yn = d

√
ϕ(τ)

2πϕ′′(τ)
ϕ′(τ)n

n3/2

(
1 +O

(
n−1

))
. (4.3)

Corollary 4.20. Let D 6= {1} be a non-empty set of positive integers and define
ϕD(x) = 1 +

∑
i∈D x

i. Assume that there exists τ ∈ (0, 1) such that τϕ′(τ) = ϕ(τ).
Then τ is the unique solution of this equation in (0, 1) and there is a constant cD
such that Ct,D 6 cDγtt−3/2, where γ = ϕ′D(τ).

Proof. We first address uniqueness of τ . Note that

xϕ′D(x)− ϕD(x) =
∑
i∈D

(i− 1)xi − 1

is strictly increasing because D 6= {1}, so if there is a solution of xϕ′D(x)−ϕD(x) = 0
in (0, 1), it is unique. Obviously, ϕD(x) satisfies the conditions of Theorem 4.19. If
D is finite, ϕD is a polynomial, which has of course infinite radius of convergence; if
D is infinite, the radius of convergence equals 1.

Let y(x) =
∑
t>0Ct,Dx

t+1. By Lemma 4.18, this is the generating function for the
number of rooted trees such that the number of children of each vertex is in D∪{0}.
But such a tree either is a single root, or it is a single root with i trees attached to
it, where i ∈ D and in each of the attached trees, the number of children of every
vertex is in D. Translating this to a functional equation gives

y(x) = x ·
(

1 +
∑
i∈D

y(x)i
)

= xϕD(x),
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completing the check of the assumptions of Theorem 4.19. Hence (4.3) in The-
orem 4.19 yields Ct,D 6 cDγ

tt−3/2, where all constants independent from t were
absorbed into cD, and γ = ϕ′D(τ) as claimed. �

With all the above lemmas at hand, we can finally prove Theorem 4.10, the main
theorem of this section.

Proof of Theorem 4.10. Remember that we still want to show that |Ft| < dγ(∆−
1)et because this gives the existence of an input F for the modified algorithm such
that it halts after at most t steps.

Let k = max{2, `} and D = 2N + 2k, then Lemma 4.17 together with Lemma 4.18
gives

|Ft| 6 (K + 1)m ·
m−1∑
r=0

(∆− 1)t−r · Ct,r,D 6

6 (K + 1)m(∆− 1)t ·
m−1∑
r=0

Ct+r(2k−1),D. (4.4)

In order to bound Ct+r(2k−1),D, we apply Corollary 4.20 with D = 2N + 2k, i. e.
ϕD(x) = 1 + x2k

1−x2 . In this case, the equation ϕD(x) = xϕ′D(x) = 0 is equivalent to

1 + x2k

1− x2 = x · 2kx2k−1(1− x2) + 2x2k+1

(1− x2)2

⇐⇒ (2k − 3)x2k+2 − (2k − 1)x2k + x4 − 2x2 + 1 = 0,

which is the equation P (x) = 0 with P as in Theorem 4.10. By Corollary 4.20, there
is a unique solution τ ∈ (0, 1) for the above equation, and there exists a constant cD
such that

Ct+r(2k−1),D 6 cDγ
t+r(2k−1)(t+ r(2k − 1))−3/2 6 cDγ

t+r(2k−1)t−3/2,

where γ = ϕ′D(τ) = ϕD(τ)/τ = τ2k−τ2+1
τ−τ3 . Plugging the above into (4.4) gives

|Ft| 6 (K + 1)m(∆− 1)t · cDt−3/2 ·
m−1∑
r=0

γt+r(2k−1) 6

6 (K + 1)mdγ(∆− 1)et · cDt−3/2 · γ
m(2k−1) − 1
γ2k−1 − 1 ,

so that we get

|Ft|
dγ(∆− 1)et 6 cD(K + 1)m · γ

m(2k−1) − 1
γ2k−1 − 1 · t−3/2 → 0

for t → ∞. In particular, the above fraction is smaller than 1 for t large enough,
giving |Ft| < dγ(∆−1)et and hence the existence of an input vector F such that the
algorithm halts on F after at most t steps and gives an acyclic edge-colouring of G
using at most K = d(γ + 2)(∆− 1)e colours. �
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We can calculate the constants occurring in the above proof for various lower bounds
g on the girth of the graph G. This results in Table 4.1 with values of the constant c
(rounded up to four decimals) such that we have a′(G) 6 dc · (∆− 1)e for all graphs
G with maximum degree ∆. Empirically, we can observe that for this construction,
c tends to 3 from above as g grows.

g D P (x) τ γ c

3 2N + 4 x6 − 2x4 − 2x2 + 1 0.6180 2 4
10 2N + 8 7x12 − 9x10 + x4 − 2x2 + 1 0.7279 1.4958 3.4959
50 2N + 48 47x52 − 49x50 + x4 − 2x2 + 1 0.8933 1.1391 3.1392
100 2N + 98 97x102 − 99x100 + x4 − 2x2 + 1 0.9344 1.0797 3.0798
200 2N + 198 197x202 − 199x200 + x4 − 2x2 + 1 0.9609 1.0454 3.0454

Table 4.1: Acyclic chromatic indices for graphs with different girths.

The results are collected in the subsequent corollary. Note that they are way stronger
than for example the bound of 16∆ that can be proved by a simple application of
the Lovász Local Lemma mentioned in the beginning.

Corollary 4.21. Let G be a graph of maximum degree ∆ and girth g. Then we have
the following:

(i) If G is simple, then a′(G) 6 4(∆− 1).

(ii) If g > 10, then a′(G) 6 d3.4959(∆− 1)e.

(iii) If g > 50, then a′(G) 6 d3.1392(∆− 1)e.

(iv) If g > 100, then a′(G) 6 d3.0798(∆− 1)e.

(v) If g > 200, then a′(G) 6 d3.0454(∆− 1)e.
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Appendix A

Bounding Probabilities

In Chapter 2, we repeatedly need to bound the probability that a certain random
variable exceeds a given lower bound. This appendix shall derive the two methods
used for the specific situations in Chapter 2 without aiming for the most general
statements. More details are given in [2], which is at the same time the main source
for this appendix.

A.1 Chernoff Bounds

The probabilities in (2.1) and (2.6) are both of the same spirit: We are given a
binomially distributed random variable X with expected value E[X] and a positive
number a > 0. The goal is to bound the probability Pr[X > E[X] + a] from above.

A first attempt could be to directly apply Markov’s inequality, which gives the bound

Pr[X > E[X] + a] 6 E[X]
E[X] + a

,

but this bound is not sufficiently sharp for our purposes. The trick of the so-called
Chernoff bounds is to use monotonicity of the map x 7→ exp(x), which implies that
for any λ > 0, we have

Pr[X > E[X] + a] = Pr
[
eλ·X > eλ·(E[X]+a)

]
. (A.1)

It turns out that applying Markov’s inequality after this transformation gives way
better results in the sense that the upper bounds are exponentially decreasing in a.

Theorem A.1. Let X be a binomially distributed random variable with parameters
n and p and let a > 0. The following two bounds hold:

(i) Pr[X > np+ a] 6 ea−a ln
(
1+ a

np

)
−np ln

(
1+ a

np

)
. [2, Thm. A.1.10]

(ii) Pr[X > np+ a] 6 e−
2a2
n . [2, Thm. A.1.4]

Proof. As indicated in (A.1), for every λ > 0 we have

Pr[X > np+ a] = Pr
[
eλX > eλ(np+a)

]
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and applying Markov’s inequality to the right-hand side yields

Pr[X > np+ a] 6 E
[
eλX

]
· e−λ(np+a). (A.2)

By definition of the binomial distribution, we have

E
[
eλX

]
=

n∑
k=0

(
n

k

)
pk(1− p)n−keλk =

n∑
k=0

(
n

k

)
(peλ)k(1− p)n−k =

(
peλ + 1− p

)n
,

and plugging this into (A.2) gives

Pr[X > np+ a] 6
(
peλ + 1− p

)n
· e−λ(np+a).

To derive (i) and (ii), we need to bound the above expression appropriately.

For the first bound, we start with substitution λ = ln(1 + a/np) and then apply the
well-known inequality (1 + a/n)n 6 ea to get

Pr[X > np+ a] 6
(
peλ + 1− p

)n
· e−λ(np+a) =

=
(

1 + a

n

)n
· e−λ(np+a) 6 ea−a ln

(
1+ a

np

)
−np ln

(
1+ a

np

)
.

For the second one, we claim that

peλ + (1− p) 6 eλ2/8+λp, (A.3)

implying

Pr[X > np+ a] 6
(
peλ + 1− p

)n
· e−λ(np+a) 6 e

λ2n
8 +λnp · e−λ(np+a) = e

λ2n
8 −λa.

Setting λ = 4a/n, we have λ2n
8 − λa = −2a2

n , so

Pr[X > np+ a] 6 e−
2a2
n

as claimed in (ii). It remains to prove (A.3). Taking logarithms, we see that the
inequality is equivalent to

ln
(
1− p+ peλ

)
6
λ2

8 + λp.

This inequality holds for λ = 0, so it is sufficient to show that the derivatives with
respect to λ of the left- and right-hand side satisfy the same inequality, namely

peλ

1− p+ peλ
6
λ

4 + p.

Repeating the same reasoning, we see that this inequality holds for λ = 0, so it
suffices to prove

(1− p)peλ

(1− p+ peλ)2 6
1
4 ,

and that last inequality is true by the inequality of arithmetic and geometric means
applied in the form

(1− p) · peλ 6
(

(1− p) + peλ

2

)2

. �
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A.2 A Deviation Inequality for Martingales

For the bound in (2.7), the Chernoff estimate methods from the previous chapter
are no longer applicable because the distribution of the random variable considered
is more difficult.

However, a similar idea combined with martingales leads to another class of upper
bounds for deviations.

Definition A.2. (i) A sequence X0, . . . , Xm of random variables in an arbitrary
probability space is a martingale if for 0 6 i < m,

E[Xi+1 |Xi, . . . , X0] = Xi.

(ii) For n ∈ Z+ and p ∈ (0, 1), G(n, p) denotes the probability space of random
graphs on the vertex set [n] where each edge independently appears with prob-
ability p.

Moreover, let Gk be the partition of G(n, p) induced by identifying elements
inducing the same graph on the first k vertices.

(iii) For a graph theoretic function f , the sequence X0, . . . , Xn of random variables
on G(n, p) defined by

Xj := E[f | Gj ]

is the vertex exposure martingale for f .

Intuitively, the vertex exposure martingale for a function f is the sequence of con-
ditional expectations of f given the information of the graph induced by the first i
vertices. In particular, X1 = E[f ] is constant because a single vertex does not expose
any edges and Xm(H) = f(H) for every graph H because the whole graph has been
exposed.

Proposition A.3. The vertex exposure martingale is a martingale.

Proof. Fix a graph theoretic function f and let X0, . . . , Xn be the vertex exposure
martingale for f . We need to show that for 0 6 i < n,

E[Xi+1 |Xi, . . . , X0] = Xi.

Plugging in the definition of the vertex exposure martingale and using the fact that
the random variables Xi, . . . , X0 induce the partition Gi, we may rewrite this as

E
[
E[f | Gi+1]

∣∣∣ Gi] = E[f | Gi].

By definition of conditional probability, for all ω ∈ G(n, p),

E
[
E[f | Gi+1]

∣∣∣ Gi](ω) =
∑
G∈Gi,

Pr[G]>0

E[E[f | Gi+1] · 1G]
Pr[G] · 1G(ω).
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Employing linearity of expectation, we get

E[E[f | Gi+1] · 1G] =
∑

G′∈Gi+1,
G′⊆G

E[E[f | Gi+1] · 1G′ ] =
∑

G′∈Gi+1,
G′⊆G

E[f · 1G′ ] = E[f · 1G],

and plugging this into the above, we conclude

E
[
E[f | Gi+1]

∣∣∣ Gi](ω) =
∑
G∈Gi,

Pr[G]>0

E[f · 1G]
Pr[G] · 1G(ω) = E[f | Gi]. �

The following theorem provides the bounds we need in (2.7).

Theorem A.4 (Azuma’s Inequality, [2, Thm. 7.2.1]). Let X0, . . . , Xm be a
martingale with X0 = 0 and |Xi+1 −Xi| 6 1 for all i ∈ [m] and let λ > 0. Then

Pr
[
Xm > λ

√
m
]
6 e−

λ2
2 .

Proof. The idea of the proof is again to fix α > 0 (a concrete value will be chosen
later) and use Markov’s inequality in the form

Pr
[
Xm > λ

√
m
]

= Pr
[
eαXm > eαλ

√
m
]
6 E

[
eαXm

]
· e−αλ

√
m. (A.4)

To bound the expected value on the right-hand side, define Yi := Xi − Xi−1 for
i ∈ [m] and note that we can write

E
[
eαXm

]
= E

[
m∏
i=1

eαYi

]
= E

[(
m−1∏
i=1

eαYi

)
· E
[
eαYm

∣∣∣Xm−1, . . . , X0
]]
. (A.5)

because Yi depends only on the values of Xm−1, . . . , X0 for i < m.

By assumption, we have |Yi| = |Xi −Xi−1| 6 1. Moreover,

E[Yi |Xi−1, . . . , X0] = E[Xi |Xi−1, . . . , X0]−Xi−1 = 0

by definition of a martingale. Define g(x) := cosh(α) + x sinh(α), then by convexity
of x 7→ eλx, the following inequality is true for any x ∈ [−1, 1]:

eαx 6
1− x

2 · e−α + 1 + x

2 · eα = g(x),

so for each i ∈ [m], we have

E
[
eαYi

∣∣∣Xi−1, . . . , X0
]
6 E[g(Yi) |Xi−1, . . . , X0] =

= cosh(α) + E[Yi |Xi−1, . . . , x0] · sinh(α) =

= cosh(α) 6 exp α
2

2 , (A.6)

where the last inequality follows from comparing the series expansions of exp and
cosh around 0.
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Plugging (A.6) into (A.5), we get

E
[
eαXm

]
6 E

[
m−1∏
i=1

eαYi

]
· e

α2
2 .

Of course, the splitting in (A.5) can be iterated and the bound in (A.6) holds for all
i ∈ [m], so we get

E
[
eαXm

]
6 E

[
m−1∏
i=1

eαYi

]
· e

α2
2 6 E

[
m−2∏
i=1

eαYi

]
· e

2α2
2 6 . . . 6 e

α2m
2 .

Plugging the above into (A.4) and finally setting α = λ/
√
m, we get the desired

bound
Pr
[
Xm > λ

√
m
]
6 E

[
eαXm

]
· e−αλ

√
m 6 e

α2m
2 −αλ

√
m = e−

λ2
2 . �
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Appendix B

The Lambert W -Function

In this appendix, we proof Proposition 3.13 and Lemma 3.18. For easier reference,
we restate both of them here as Proposition B.1 and Lemma B.2, respectively.

Proposition B.1. For each γ ∈ (0, 1/4), the equation

1 = ye−γy (B.1)

has a unique solution y(γ) ∈ [1, 2] and defines a function y : (0, 1/4)→ [1, 2].

Proof. The equation (B.1) is equivalent to y = eγy. For fixed γ, both the left- and
right-hand side are continuous and strictly increasing. Note that

y
∣∣
y=1 = 1 6 eγ = eγy

∣∣
y=1

and y
∣∣
y=2 = 2 > e

1
2 > e2γ = eγy

∣∣
y=2,

so there is a unique solution y(γ) in the interval [1, 2] and y defines a function
y : (0, 1/4)→ [1, 2]. �

Lemma B.2. Let y : (0, 1/4) → [1, 2] be as in Proposition B.1. Then, for γ ∈
(0, 1/4), we have

y(γ) 6 1 + 6γ.

To proof Lemma B.2, we introduce a related well-known function: The Lambert
W -function.

Definition B.3. The Lambert W -function is the inverse of the map

f : R→ R, W 7→WeW .

It can be observed that the function f has a minimum at W = −1 with value 1
e , it

is strictly decreasing on (−∞,−1) with limx→−∞ f(x) = 0 and strictly increasing on
(−1,∞) with limx→∞ f(x) =∞. Consequently, W has two branches:

W0 : (−e−1,∞)→ (−1,∞) and W1 : (−e−1, 0)→ (−∞,−1).

This behaviour can also be observed in the plot of the Lambert W -function, see
Figure B.1. The close relation of the map y : (0, 1/4) → [1, 2] to the Lambert
W -function enables us to prove Lemma B.2.
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B. The Lambert W -Function

−1 1 2 3

−1

−2

−3

1

(−e−1,−1)

W0

W1

Figure B.1: The Lambert W -function.

Proof of Lemma B.2. For γ ∈ (0, 1/4), let z(γ) := γy(γ) and note that (B.1) can
be transformed as follows:

1 = y(γ)e−γy(γ) ⇐⇒ −γ = −z(γ)e−z(γ) ⇐⇒ z(γ) = −W0(−γ)

⇐⇒ y(γ) = −W0(−γ)
γ

.

Choosing the branch W0 guarantees that y(γ) ∈ [1, 2]. Hence we need to prove

−W0(−γ)
γ

6 1 + 6γ, or equivalently W0(x) > x− 6x2

for x ∈ (−1/4, 0), where we substituted x = −γ. Taking into account that x =
W0(x)eW0(x), the latter can be rewritten as

W0(x) >W0(x)eW0(x) − 6W0(x)2e2W0(x) ⇐⇒ 1 6 eW0(x) − 6W0(x)e2W0(x)

because W0(x) < 0 for x < 0. More precisely, we know that W0(x) ∈ [−1, 0], so it
suffices to show that for all t ∈ [−1, 0], we have

1 6 et − 6te2t.

The function ϕ : t 7→ et − 6te2t on the right-hand side has value 1 at t = 0 and its
derivative is

ϕ′(t) = et − 6e2t − 12te2t = et
(
1− 6(1 + 2t)et

)
.

It can be calculated that ϕ(−1) = ϕ′(−1) ≈ 1.18 and ϕ(0) = 1, so it suffices to
show that ϕ′ changes its sign at most once on the interval [−1, 0]. Equivalently, it
is sufficient to show that et

(
1− 6(1 + 2t)et

)
= 0 has at most one solution in [−1, 0].

Note that
et
(
1− 6(1 + 2t)et

)
= 0 ⇐⇒ 1 = 6(1 + 2t)et,

and t 7→ 6(1 + 2t)et is strictly increasing on [−3/2,∞), hence there can be at most
one solution. This proves the lemma. �
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Appendix C

Notation

Graph theory notation

G = (V,E) . . . a graph G with vertices V and edges E ⊆
(V

2
)

e = {u, v} . . . an edge e connecting vertices u and v.

NG(v) . . . the neighbourhood of v in the graph G, also de-
noted N(v) if unambiguous

N+
G (v) . . . the inclusive neighbourhood of v in the graph G,

i. e. N+
G (v) := NG(v)∪ {v}, also denoted N+(v)

if unambiguous

degG(v) . . . the degree |NG(v)| of v in the graph G, also
denoted deg(v) if unambiguous

G[U ] . . . the subgraph of G = (V,E) induced by the ver-
tices in U ⊆ V

χ(G) . . . the chromatic number of the graph G

χ′(G) . . . the edge chromatic number of the graph G

G(n, p) . . . the space of random graphs on n vertices where
each edge appears with probability p

Probability theory notation

A . . . the complement of an event A

Pr[A] . . . probability of an event A

Pr[A | P] . . . conditional probability of an event A given a
partition P of the underlying probability space

Pr[X |X1, . . . , Xn] . . . conditional probability of a random variable X
given the partition of the underlying probability
space generated by random variables X1, . . . , Xn
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E[X] . . . expected value of a random variable X

E[X | P] . . . conditional expectation of a random variable X
given a partition P of the underlying probability
space

E[X |X1, . . . , Xn] . . . conditional expectation of a random variable X
given the partition of the underlying probability
space generated by random variables X1, . . . , Xn

Other notation

[n] . . . the set {1, 2, . . . , n} of the first n positive inte-
gers

1X . . . the indicator function of a set X, i. e. the func-
tion with value 1 on X and 0 else

log . . . the logarithm with respect to the base e if not
indicated otherwise

(n)d . . . the falling factorial, (n)d = n · (n− 1) · . . . · 2 · 1

n!! . . . the semifactorial, n!! = n · (n− 2) · . . . · 3 · 1 for
odd n and n!! = n · (n− 2) · . . . · 4 · 2 for even n(X

k

)
. . . the set of all subsets of X of cardinality k
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Dyck word, 61, 62
partial, 61, 62

edge-colouring, 12
acyclic, 55

entropy compression, 58
execution log, 51

Galton-Watson process, 53

hypergraph packing problem, 29

intersection graph, 51

Lambert W -function, 73

linearity of expectation, 20, 21
Lovász Local Lemma, 2

constructive proof, 49, 55
lopsided, 5, 35
symmetric, 1, 13, 15
symmetric & lopsided, 5, 29
upper bounds, 7, 41

Markov’s inequality, 67, 68
martingale, 69

large deviation inequality, 69
vertex exposure, 69

matching, 23
f -representation, 25
conflicting, 24
maximum cardinality, 24, 29
perfect, 24, 31

random graph, 20, 69
random matching, 23, 25, 29, 31
random partition, 11, 15
random source, 53, 58
resampling algorithm, 50
rooted tree, 62

generating function, 63

union bound, 12, 13, 21

Vizing’s theorem, 12, 56

witness tree, 51, 52, 54
proper, 52
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[17] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász
local lemma. Journal of the ACM, 57(2):11:1–11:15, 2010.

[18] Terence Tao. Moser’s entropy compression argument. Terence Tao’s wordpress
blog, Url: http://terrytao.wordpress.com/2009/08/05/mosers-entropy-
compression-argument/, August 2009. Accessed: June 15, 2015.

http://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
http://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/


 

 
 

Declaration of originality 
 
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, 
Master’s thesis and any other degree paper undertaken during the course of studies, including the 
respective electronic versions. 
 

Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 

__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 

Title of work (in block letters): 

 

 
 

Authored by (in block letters): 

For papers written by groups the names of all authors are required. 

 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information 
sheet. 

− I have documented all methods, data and processes truthfully. 

− I have not manipulated any data. 

− I have mentioned all persons who were significant facilitators of the work. 

 

I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 

   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

The Lovász Local Lemma: Selected Variants and Applications

Nägele Martin

Zürich, 15. 07. 2015




	Contents
	The Lovász Local Lemma and its Variants
	The basic Local Lemma
	The Lopsided Local Lemma
	Local Lemma-type Upper Bounds

	Colouring Graphs with sparse Neighbourhoods
	Theorem Statement and Proof Outline
	The first Case: f large
	The second Case: f small
	Conclusion and Asymptotic Tightness

	Applications of the Lopsided Lemma
	The Space of Random Matchings
	Random Matchings in K_{n1,n2}
	A Negative Dependency Graph for Canonical Events
	An Application to Packing Problems

	Random Matchings in K_n
	Negative Dependency Graphs for Canonical Events
	Near-Positive Dependency Graphs for Canonical Events
	Asymptotic Counting using Local Lemma
	Enumeration of d-regular Graphs


	Algorithmic Aspects of the Local Lemma
	A Constructive Proof of the Local Lemma
	The Resampling Algorithm
	Execution Logs and Witness Trees

	Acyclic Edge-Colouring
	The Algorithmic Approach
	Entropy Compression & Analysis of the Algorithm


	Bounding Probabilities
	Chernoff Bounds
	A Deviation Inequality for Martingales

	The Lambert W-Function
	Notation
	Index
	Bibliography

